ISC, CAS, Google Scholar     h-index: 20

Document Type : Original Research Article


1 Department of Chemistry, Ilam branch, Islamic Azad University, Ilam, Iran

2 Arta Shimi Alborz Research Center, Tehran, Iran


Lack of dopamine, which is a neurotransmitter in the brain, causes diseases such as Parkinson. Therefore, in order to diagnose and prevent these diseases, it is important to accurately measure the amount of dopamine. Aptasensor is one of the most sensitive and selective measuring tools for this purpose. In this research, a modified electrochemical sensor (Apt-AMP/AuNPs-PRGO/GCE) by nanocomposite was designed for highly accurate and selective measurement of dopamine. The results of the experiment using FTIR, SEM, and CV methods show a very favourable modification of the electron surface. Methylene blue dye was used as an indicator in this experiment and the maximum concentration and interaction time for this dye were optimized at 50 µM and 15 minutes. The electrode designed using the DPV method was able to identify and measure dopamine with a detection limit of 120 pM and a very high sensitivity compared with other compounds with the same structure.

Graphical Abstract

‎A Simple Specific Dopamine Aptasensor Based on Partially Reduced Graphene Oxide–AuNPs composite


Main Subjects

[1]          A. Sassolas, L.J. Blum, B.D. Leca‐Bouvier, Electrochemical aptasensors, Electroanal. An Int. J. Devoted to Fundam. Pract. Asp. Electroanal., 21 (2009) 1237–1250.
[2]          L. Li, S. Xu, H. Yan, X. Li, H.S. Yazd, X. Li, T. Huang, C. Cui, J. Jiang, W. Tan, Nucleic acid aptamers for molecular diagnostics and therapeutics: advances and perspectives, Angew. Chemie Int. Ed., 60 (2021) 2221–2231.
[3]          G. Ștefan, O. Hosu, K. De Wael, M.J. Lobo-Castañón, C. Cristea, Aptamers in biomedicine: Selection strategies and recent advances, Electrochim. Acta., 376 (2021) 137994.
[4]          K. Feng, C. Sun, Y. Kang, J. Chen, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement, Electrochem. Commun., 10 (2008) 531–535.
[5]          L. Barthelmebs, A. Hayat, A.W. Limiadi, J.-L. Marty, T. Noguer, Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles, Sensors Actuators B Chem., 156 (2011) 932–937.
[6]          Y. Li, H.J. Lee, R.M. Corn, Fabrication and characterization of RNA aptamer microarrays for the study of protein–aptamer interactions with SPR imaging, Nucleic Acids Res., 34 (2006) 6416–‎‎6424.
[7]          Z. Guo, J. Tian, C. Cui, Y. Wang, H. Yang, M. Yuan, H. Yu, A label-free aptasensor for turn-on fluorescent detection of ochratoxin a based on SYBR gold and single walled carbon nanohorns, Food Control., 123 (2021) 107741.
[8]          M.A. Pellitero, A. Shaver, N. Arroyo-Currás, Critical review—Approaches for the electrochemical interrogation of DNA-based sensors: A critical review, J. Electrochem. Soc., 167 ‎‎(2019) 37529.
[9]          S. Wang, Z. Li, F. Duan, B. Hu, L. He, M. Wang, N. Zhou, Q. Jia, Z. Zhang, Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon: Label-free aptasensor for ultrasensitive tobramycin detection, Anal. Chim. Acta., 1047 ‎‎(2019) 150–162.
[10]       T. Hussain, M.F. Lokhandwala, Renal dopamine receptors and hypertension, Exp. Biol. Med., ‎‎228 (2003) 134–142.
[11]       U. Rajaji, R. Arumugam, S.-M. Chen, T.-W. Chen, T.-W. Tseng, S. Chinnapaiyan, S.-Y. Lee, W.-H. Chang, Graphene nanoribbons in electrochemical sensors and biosensors: a review, Int. J. Electrochem. Sci., 13 (2018) 6643.
[12]       M. Krystek, D. Pakulski, V. Patroniak, M. Górski, L. Szojda, A. Ciesielski, P. Samorì, High‐Performance Graphene‐Based Cementitious Composites, Adv. Sci., 6 (2019) 1801195.
[13]       Z. Niknam, F. Hosseinzadeh, F. Shams, L. Fath‐Bayati, G. Nuoroozi, L. Mohammadi Amirabad, F. Mohebichamkhorami, S. Khakpour Naeimi, S. Ghafouri‐Fard, H. Zali, Recent advances and challenges in graphene‐based nanocomposite scaffolds for tissue engineering application, J. Biomed. Mater. Res. Part A., 110 (2022) 1695–1721.
[14]       C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing, Biosens. Bioelectron., 25 (2010) 1070–1074.
[15]       F. Cui, X. Zhang, Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites, J. Electroanal. Chem., 669 (2012) 35–41.
[16]       X. Cao, Y. Ye, Y. Li, X. Xu, J. Yu, S. Liu, Self-assembled glucose oxidase/graphene/gold ternary nanocomposites for direct electrochemistry and electrocatalysis, J. Electroanal. Chem., 697 (2013) ‎‎10–14.
[17]       S. Sabury, S.H. Kazemi, F. Sharif, Graphene–gold nanoparticle composite: application as a good scaffold for construction of glucose oxidase biosensor, Mater. Sci. Eng. C., 49 (2015) 297–304.
[18]       N. Nakatsuka, J.M. Abendroth, K.A. Yang, A.M. Andrews, Divalent cation dependence enhances dopamine aptamer biosensing, ACS Appl. Mater. Interfaces. 13 (2021) 9425–9435.
[19]       W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958) ‎‎1339.
[20]       D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2008) 101–105.
[21]       Y. Xu, K. Sheng, C. Li, G. Shi, Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide, J. Mater. Chem. 21 (2011) 7376–7380.
[22]       J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang, Z. Zhang, Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis, Nanoscale., 2 (2010) 2733–2738.
[23]       S. Heydarzadeh, H. Roshanfekr, H. Peyman, S. Kashanian, Modeling of ultrasensitive DNA hybridization detection based on gold nanoparticles/carbon-nanotubes/chitosan-modified electrodes, Colloids Surfaces A Physicochem. Eng. Asp., 587 (2020).
[24]       A.A. Gorodetsky, M.C. Buzzeo, J.K. Barton, DNA-mediated electrochemistry, Bioconjug. Chem. 19 (2008) 2285–2296.
[25]       Y. Jiao, W. Hou, J. Fu, Y. Guo, X. Sun, X. Wang, J. Zhao, A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos, Sensors Actuators B Chem. 243 (2017) ‎‎1164–1170.