ISC, CAS, Google Scholar     h-index: 20

Document Type : Original Research Article


Department of Chemistry, Benue State University, Nigeria


Groundnut shells (GSs) are abundant renewable by-products which have been underexploited for potential applications. Therefore, this paper reports the bioactive potential of groundnut shell extracts (GSEs) against Staphylococcus aureus and Pseudomonas aeruginosa. The GSs were ground into powder form and subjected to extraction using ethanol, ethyl acetate, and a mixture of ethanol and ethyl acetate using an electrical shaker for 6 h and 12 h; and subsequently centrifuged at 2000 rpm for 20 min. The GSEs were then qualitatively screened for phenol, quinone, saponin tannins, and flavonoids using the standard procedures. More so, antibacterial activities of these GSEs against P. aeruginosa (ATCC 29953) and S. aureus (ATCC 25923) were tested using Agar well diffusion method on Mueller-Hinton agar (MHA). Therefore, the preliminary phytochemical screening reviewed the presence of saponin, tannin, flavonoid, quinone, and phenol. And the investigation of the antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa demonstrated that S. aeureus was more sensitive to attack by the EtOH derived GSEs; whereas, P. aeruginosa was readily affected by the EtOAc GSEs. Generally, P. aeruginosa was more inhibited by these GSEs even at the lower concentrations of 25 and 12.5 mg/ mL; especially with the EtOH + EtOAc and EtOAc derived GSEs. EtOH + EtOAc GSE has potential of enhancing these bacterial inhibitions

Graphical Abstract

Bioactivity of Arachis hypogaea Shell Extracts against Staphylococcus aureus and Pseudomonas aeruginosa


Main Subjects

[1]. Iroha I.R., Ozor H.O., Moses I.B., Onuora A.L., Kalu A.C., Nwakaeze E.A., Ude-Ude I., Mohammed I.,  Ngwu J.N., Arch. Clin. Microbiol., 2020, 11:109
[2]. Gopalkrishnan S., George S., Benny P., J. Pharma Biomed. Sci., 3 (2010) 342
[3]. Bipul B., Kimberly R., Fredrick M., Dwayne O., Int. J. Microbiol., 2(2013) 231
[4]. Iwu M., Duncan A., Okunji C., New Antimicrobials of Plant Origin, in Perspectives on New Crops and New Uses, 1st ed., Injanick J., Ed. Alexanderia, VA: ASHS Press, 1999
[5]. Yu Y., Wang L., Gao F., Zhang S., 4th Int. Conf. Mach. Mater. Comput. Technol., (2016), 1501
[6]. Egharevba H., Kunl O., Ethnobot. leafl., 14(2010 ) 570
[7]. Nostro A., Cellini L., Bartolomeo S., Phytother. Res., 20 (2006) 187
[8]. Wang J., Wang Y.D., Yang X.L., Yu Y.L., Acad. Perio. Farm Prod. Proc., 4 (2008) 70
[9]. Sobolev V.C., Cole R.J., J. Sci. Food. Agr., 84 (2003) 105
[10]. Lou H., Yuan H., Yamazaki Y., Sasaki T., Oka S., Planta. Med., 67 (2001) 345
[11]. Duh P.D., Yeh D.B., Yen G.C., J. Am. Oil. Chem. Soc., 69 (1992) 814
[12]. Belaoussoff S., Kevan P.G., Environmentalist, 23 (2003) 255
[13]. Asemave K., Biobased Lipophilic Chelating Agents and their Applications in Metals Recovery, University of York, UK, 2016
[14]. Asemave K., Asemave T.A., Int. J. Sci. Res., 4 (2015) 2133
[15]. Asemave K., Anure T.T., Prog. Chem. Biochem. Res., 2 (2019) 92
[16]. Nzikou J.M., Kimbonguila A., Matos L., Loumouamou B., Pambou-Tobi N.P.G., Ndangui C.B., Abena A.A., Silou T., Scher J., Desobry S. Res. J. Environ. Earth Sci., 2 (2010) 31
[17]. Asemave K., Abakpa D.O., Ligom T.T., Prog. Chem. Biochem. Res., 3 (2020) 74
[18]. Ajuru M.G., Williams L.F., Ajuru G., J. Food Nutr. Sci., 5 (2017) 198
[19]. Jahangirian H., Haron M.J., Shah M.H., Abdollahi Y.A.D.O.L.L.A.H., Rezayi M.A.J.I.D., Vafaei N.A.Z.A.N.I.N., Dig. J. Nanomater. Biostructures, 8 (2013) 1263
[20]. Falusi V.O., Adesina I.A., Aladejimokun A.O., Elehinafe T.R., J. Appl. Life Sci. Int., 14 (2017) 1
[21]. Al-Azawi A.H., Hassan Z.H., Pakistan J. Biotechnol., 14 (2017) 601
[22]. Adhikari B., Dhungana S.K., Ali M.W., Adhikari A., Kim I.D., Shin D.H.,  J. Saudi Soc. Agric. Sci., 18 (2019) 437
[23]. Xia W., Zhao P., Wang J., Li Z., Lee N.A., 2nd International Conference on Biomedical and Biological Engineering, 2017