Document Type : Original Research Article


1 National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China

2 Departmrnt of Nanobiotechnology, Protein Research Center, Shahid Beheshti University, G.C., Tehran, Iran



Human epidermal keratinocyte cells are the first defence blocks against the aggressive agents such as pathogens and xenobiotic materials. Synthesis process of the cellular proteins can be affected by abiotic stresses (aBS like: SiO2 nanoparticles) and biotic stresses (BS like: Virus), leading to the alteration of consumed energy profiles of proteins. The consumed energy profile of each protein was calculated based on their consumed ATP during the amino acids synthesizing procedure. Cells consumed more ATP, more energy, to synthesize more proteins under BS conditions compare to aBS conditions. Our results suggested that, the cells infected by pathogens are tend to survive longer than the treated cells by xenobiotic materials. Our data analysis revealed that the most energy reduction took place under aBS conditions. So, aBS could have severe effect on energy production pathways and decrease the energy source of cells. Moreover, the results demonstrated that the complexity of cellular protein networks under aBS conditions were more than BS conditions. It seems the cellular energy reduction under aBS conditions is one of the important factors in cell death. In addition, the position of proteins in the protein network was another important factor that should be carefully considered.

Graphical Abstract

Biotic / Abiotic Stress Influences on Human Epidermal Keratinocyte Cells


Main Subjects

[1] N. O. Fortunel, M. T. Martin, Int. J. Radiat. Biol., 2012, 88: 677

[2] R. Faridi, A. Zahra, K. Khan, M. Idrees, Virol. J., 2011, 8: 269

[3] P. G. Rossi, F. Chini, S. Bisanzi, E. Burroni, G. Carillo, A. Lattanzi, P. Capparucci, Infect. Agent. Cancer, 2011, 6: 2

[4] S. Boulenouar, C. Weyn, M. Van Noppen, M. Moussa Ali, M. Favre, P. O. Delvenne, V. Fontaine, Carcinogenesis, 2010, 31:473

[5] a) M. Mahmoudi, I. Lynch, M. R. Ejtehadi, M. P. Monopoli, F. B. Bombelli, and S. Laurent, Chem. Rev., 2011, 111: 5610 b) M. Soleiman-Beigi, Z. Arzehgar, Synlett, 2018, 29:986 c) S. Sajjadifar, Z. Arzehgar, S. Khoshpoori, J. Inorg. Organomet. Polym. Mater., 2018, 28:837 d) Z. Arzehgar, S. Sajjadifar, H. Arandiyan, Asian J. Green Chem., 2019, 3:43 e) M. Soleiman-Beigi, Z. Arzehgar, J. Sulfur Chem., 2015, 36:395 f) M. Soleiman-Beigi, Z. Arzehgar, Monatsh Chem., 2016, 147:1759 f) M. Soleiman‑Beigi Z. Arzehgar Heteroatom Chem., 2016, 26:355 g) M. Soleiman-Beigi, Z. Arzehgar, B. Movassagh, Synthesis, 2010, 392

[6] M. M. Byranvand, A. Dabirian, A. N. Kharat, and N. Taghavinia, RSC Adv., 2015, 5: 33098

[7] M. A. Malvindi, V. De Matteis, A. Galeone, V. Brunetti, G. C. Anyfantis, A. Athanassiou, P. P. Pompa, PLoS One, 2014, 9: e85835

[8] X. Q. Zhang, L. H. Yin, M. Tang, Y. P. Pu, Biomed. Environ. Sci., 2011, 24: 661

[9] J. Duan, Y. Yu, Y. Li, Y. Yu, Y. Li, X. Zhou, Z. Sun, PLoS One, 2013, 8: e62087

[10] S. Echevarría-Zomeño, E. Yángüez, N. Fernández-Bautista, A. Castro-Sanz, A. Ferrando, M. Castellano, Int. J. Mol. Sci., 2013, 14: 4670



[13] X. Yang, J. Liu, H. He, L. Zhou, C. Gong, X. Wang, B. Zhang, Part. Fibre Toxicol., 2010, 7: 1

[14] X. Q. Zhang, L. H. Yin, M. Tang, Y. P. Pu, Biomed. Environ. Sci., 2011, 24: 661

[15] M. A. Merkley, E. Hildebrandt, R. H.Podolsky, H. Arnouk, D. G. Ferris, W. S. Dynan, H. 2009, Stöppler, Proteome Sci., , 7: 29

[16] C. Kaleta, S. Schäuble, U. Rinas, S. Schuster, Biotechnol. J., 2013, 8: 1105

[17] D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-Cepas, M. Kuhn, Nucleic Acids Res., 2015, 43: D447

[18] H. Kim, K. Strange, Am. J. Physiol. Cell Physiol., 2013, 305: C1257

[19] A. M. Pickering, R. A. Linder, H. Zhang, H. J. Forman, K. J. A. Davies, J. Biol. Chem., 2012, 287: 10021

[20] C. Goldring, N. Kitteringham, R. Jenkins, I. Copple, J.-F. Jeannin, B. K. Park, J. Exp. Biol., 2006, 209: 2337

[21] I. Passagne, M. Morille, M. Rousset, I. Pujalté, B. L’azou‏, Toxicology., 2012, 299:112

[22] K.D. Quint, R. E. Genders, M. N.C de Koning, C. Borgogna, M. Gariglio, J. N. Bouwes Bavinck, J. Doorbar, M.C. Feltkamp‏, 2015, J. Pathology, 235: 342

[23] L. Cicchini, R.Z Blumhagen, J.A Westrich, M.E Myers, C.J Warren, C. Siska, D. Raben, K.J Kechris, D. Pyeon‏, 2017, Scientific reports ,7: 3633

[24] M.M Sthijns, W. Thongkam, C. Albrecht, B. Hellack, A. Bast, G. Haenen, R.P.F. Schins‏. Toxicology in Vitro, 2017, 40: 223