ISC, CAS, Google Scholar     h-index: 20

Document Type : Original Research Article


Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India


In this report, imidazoanthraquinone-triarylamines fluorescent probe have examined for their coordination behaviour against tetrabutylammonium (TBA) salts of various anions in DMSO solvent. The anionic sensing ability of dyes was monitored by using colorimetric technique, UV−Vis absorption/emission spectroscopy. Among the various anions used, the probes were found selectively sensitive towards F−, CN− and OH− ions and show marked anion-induced colorimetric and optical response with red-shifted intramolecular charge transfer (ICT) absorption and emission band. The red shift in optical signal of all sensors established a deprotonation mechanism involving the −NH moiety of the imidazole ring. Besides, anion selectivity for probe-analyte interaction was found to be depended on the acidity/binding unit of sensor and basicity/hardness of anions (F− >CN− >OH−). Additionally, presence of electron donor or acceptor substituents on triarylamine also alters the chromogenic response or binding affinity of the sensors and found to be decreased with increase in ICT character. Further, low detection limit and high stability constant obtained from titration studies of ~10–6 M sensors than previously reported ~10–5 M imidazoanthraquinone sensors makes them strong selective and sensitive anionic-chemosensors.

Graphical Abstract

Imidazoanthraquinone-triarylamines based Chromofluorogenic Chemosensors for Anion Sensing


Main Subjects

[1]     P.D. Beer, P.A. Gale, Anion Recognition and Sensing: The State of the Art and Future Perspectives. Angewandte Chemie International Edition, 40 (2001) 486−516.
[2]     R. Martínez-Man^ez, F. Sancenon, Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103 (2003) 4419–4476.
[3]     C.R. Bondy, S.J. Loeb, Amide based receptors for anions. Coordination Chemistry Reviews, 240 (2003) 77−79.
[4]     C. Suksai, T. Tuntulani, Chromogenic anion sensors. Chemical Society Reviews, 32 (2003) 192−202.
[5]     R. Martínez-Máñez, F. Sancenón, New Advances in Fluorogenic Anion Chemosensors. Journal of Fluorescence, 15 (2005) 267−285.
[6]     C. Saravanan, S. Easwaramoorthi, C. Y. Hsiow, K. Wang, M. Hayashi, L. Wang, Benzoselenadiazole Fluorescent Probes–Near-IR Optical and Ratiometric Fluorescence Sensor for Fluoride Ion. Organic Letters, 16 (2014) 354–357.
[7]     J.M. Lloris, R. Martninez-Manez, M.E. Padill, A. Tosta, T. Pardo, J. Soto, P.D. Beer, J. Cadman, D.K. Smith, Cyclic and open-chain aza–oxa ferrocene-functionalised derivatives as receptors for the selective electrochemical sensing of toxic heavy metal ions in aqueous environments. Journal of the Chemical Society Dalton Transactions, (1999) 2359−2370.
[8]     K. Rurack, Flipping the light switch ‘ON’ – the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57 (2001) 2161−2195.
[9]     V. Misra, H. Mishra, H.C. Joshi, T.C. Pant, An optical pH sensor based on excitation energy transfer in Nafion® film. Sensors and Actuators B: Chemical, 82 (2002) 133–141.
[10] C.D. Geddes, J.R. Lakowicz, Advanced Concepts in fluorescence sensing Part A: small molecule sensing, Springer, New York (2005).
[11] Y. Zhou, J.F. Zhang, J. Yoon, Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chemical Reviews, 114 (2014) 5511–5571.
[12] F. Wang, L. Wang, X. Chen, J. Yoon, Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chemical Society Reviews, 43 (2014) 4312–4324.
[13] A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 97 (1997) 1515−1566.
[14] L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, Luminescent chemosensors for transition metal ions. Coordination Chemistry Reviews, 205 (2000) 59−83.
[15] Jimenez, R. Martínez-Mánez, F. Sancenón, J.V. Ros-Lis, A. Benito, J. Soto, A New Chromo-chemodosimeter Selective for Sulfide Anion. Journal of the American Chemical Society, 125 (2003) 9000–9001.
[16] J.F. Callan, A.P. de Silva, D.C. Magri, Luminescent sensors and switches in the early 21st century. Tetrahedron, 61 (2005) 8551−8558.
[17] C. Suksai, T. Tuntulani, Chromogenic Anion Sensors, Anion Sensing, Springer, Berlin/Heidelberg (2005).
[18] T. Gunnlaugsson, M. Glynn, G.M. Tocci, P.E. Kruger, F.M. Pfeffer, Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250 (2006) 3094−3117.
[19] K.S. Moon, N. Singh, G.W. Lee, D.O. Jang, Colorimetric anion chemosensor based on 2-aminobenzimidazole: naked-eye detection of biologically important anions. Tetrahedron, 63 (2007) 9106−9111.
[20] L.M. Zimmermann-Dimer, V.G. Machado, Chromogenic anionic chemosensors based on protonated merocyanine solvatochromic dyes: Influence of the medium on the quantitative and naked-eye selective detection of anionic species. Dyes and Pigments, 82 (2009) 187−195.
[21] Z. Xu, X. Chen, H.N. Kim, J. Yoon, Sensors for the optical detection of cyanide ion. Chemical Society Reviews, 39 (2010) 127−137.
[22] V. Kumar, H. Rana, M.P. Kaushik, A naked-eye selective detection of cyanide ion: studies on the effect of chromophores and spacers on ditopic receptors. Analyst, 136 (2011) 1873−1880.
[23] Y.-H. Jeong, C.-H. Lee, W.-D. Jang, A diketopyrrolopyrrole-based colorimetric and fluorescent probe for cyanide detection. Chemistry: An Asian Journal, 7 (2012) 1562–1566.
[24] M. Formica, V. Fusi, L. Giorgi, M. Micheloni, New fluorescent chemosensors for metal ions in solution. Coordination Chemistry Reviews, 256 (2012) 170−192.
[25] L.E. Santos-Figueroa, M.E. Moragues, E. Climent, A. Agostini, R. Martínez-Mánez, F. Sancenón, Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chemical Society Reviews, 42 (2013) 3489−3613.
[26] T.W. Hudnall, C.W. Chiu, F.P. Gabbai, Fluoride ion recognition by chelating and cationic boranes. Accounts of Chemical Research, 42 (2009) 388−397.
[27] P.A. Gale, C. Caltagirone, Anion sensing by small molecules and molecular ensembles. Chemical Society Reviews, 44 (2015) 4212−4227.
[28] T.W. Hudnall, F.P. Gabbai, Ammonium Boranes for the Selective Complexation of Cyanide or Fluoride Ions in Water. Journal of the American Chemical Society, 129 (2007) 11978–11986.
[29] V. Kumar, M.P. Kaushika, A.K. Srivastava, A. Pratapa, V. Thiruvenkatamb, T.N.G. Row, Thiourea based novel chromogenic sensor for selective detection of fluoride and cyanide anions in organic and aqueous media. Analytica Chimica Acta, 663 (2010) 77−84.
[30] A. Aldrey, C. Nunez, V. Garca, R. Bastida, C. Lodeiro, A. Macıas, Anion sensing properties of new colorimetric chemosensors based on macrocyclic ligands bearing three nitrophenylurea groups. Tetrahedron, 66 (2010) 9223−9230.
[31] X.-M. Liu, Q. Zhao, W.-C. Song, X.-H. Bu, New Highly Selective Colorimetric and Ratiometric Anion Receptor for Detecting Fluoride Ions. Chemistry—A European Journal, 18 (2012) 2806−2811.
[32] S. Madhu, M. Ravikanth, Boron-Dipyrromethene Based Reversible and Reusable Selective Chemosensor for Fluoride Detection. Inorganic Chemistry, 53 (2014) 1646–1653.
[33] S.K. Sarkar, S. Mukherjee, P. Thilagar, Going beyond Red with a Tri- and Tetracoordinate Boron Conjugate: Intriguing Near-IR Optical Properties and Applications in Anion Sensing. Inorganic Chemistry, 53 (2014) 2343–2345.
[34] X.-M. Liu, Y.-P. Li, Y.-H. Zhang, Q. Zhao, W.-C. Song, J. Xu, X.-H. Bu, Ratiometric fluorescence detection of fluoride ion by indole-based receptor. Talanta, 131 (2015) 597−602.
[35] Y. Bao, B. Liu, H. Wang, J. Tian, R. Bai, A “naked eye” and ratiometric fluorescent chemosensor for rapid detection of F based on combination of desilylation reaction and excited-state proton transfer. Chemical Communications, 47 (2011) 3957−3959.
[36] L. Fu, F.-L. Jiang, D. Fortin, P.D. Harvey, Y. Liu, A reaction-based chromogenic and fluorescent chemodosimeter for fluoride anions. Chemical Communications, 47 (2011) 5503−5505.
[37] T. Gunnlaugsson, A.P. Davis, M. Glynn, Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensors. Chemical Communications, (2001) 2556−2557.
[38] J.J. Lavigne, E.V. Anslyn, Sensing A Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors. Angewandte Chemie International Edition, 40 (2001) 3118−3130.
[39] F.-Y. Wu, Y.-B. Jiang, p-Dimethylaminobenzamide as an ICT dual fluorescent neutral receptor for anions under proton coupled electron transfer sensing mechanism. Chemical Physics Letters, 355 (2002) 438−444.
[40] S.K. Kim, A. Yoon, new fluorescent PET chemosensor for fluoride ions. Chemical Communications, (2002) 770−771.
[41] P.A. Gale, Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coordination Chemistry Reviews, 240 (2003) 191-221.
[42] C. Wolf, M. Xuefeng, Synthesis of Conformationally Stable 1,8-Diarylnaphthalenes:  Development of New Photoluminescent Sensors for Ion-Selective Recognition. Journal of the American Chemical Society, 125 (2003) 10651–10658.
[43] T. Gunnlaugsson, A.P. Davis, G.M. Hussey, J. Tierney, M. Glynn, Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors. Organic and Biomolecular Chemistry, 2 (2004) 1856−1863.
[44] T.W. Bell, N.M. Hext, Supramolecular optical chemosensors for organic analytes. Chemical Society Reviews, 33 (2004) 589−598.
[45] L. Pu, Fluorescence of Organic Molecules in Chiral Recognition. Chemical Reviews, 104 (2004) 1687−1716.
[46] Stibor, P. Zlatušková, Chiral Recognition of Anions, in: Stibor I. (Ed.) Anion Sensing. Topics in Current Chemistry, Springer, Berlin, Heidelberg (2005), 31−63.
[47] S.O. Kang, R.A. Begum, K. Bowman-James, Amide‐Based Ligands for Anion Coordination. Angewandte Chemie International Edition, 45 (2006) 7882−7894.
[48] M.H. Filby, J.W. Steed, A modular approach to organic, coordination complex and polymer based podand hosts for anions. Coordination Chemistry Reviews, 250 (2006) 3200−3218.
[49] C.M.G. dos Santos, T. McCabe, G.W. Watson, P.E. Kruger, T. Gunnlaugsson, The Recognition and Sensing of Anions through “Positive Allosteric Effects” Using Simple Urea−Amide Receptors. The Journal of Organic Chemistry, 73 (2008) 9235−9244.
[50] W.-X. Liu, Y.-B. Jiang, Intramolecular Hydrogen Bonding and Anion Binding of N-Benzamido-N‘-benzoylthioureas. The Journal of Organic Chemistry, 73 (2008) 1124–1127.
[51] P. Anzenbacher, A.C. Try, H. Miyaji, K. Jursíková, V.M. Lynch, M. Marquez, J.L. Sessler, Fluorinated Calix[4]pyrrole and Dipyrrolylquinoxaline:  Neutral Anion Receptors with Augmented Affinities and Enhanced Selectivities. Journal of the American Chemical Society, 122 (2000) 10268–10272.
[52] K. Rurack, U. Resch-Genger, Rigidization, preorientation and electronic decoupling—the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chemical Society Reviews, 31 (2002) 116−127.
[53] B. Valeur, I. Leray, Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 205 (2000) 3−40.
[54] C.-Y. Chen, J.-H. Ho, S.-L. Wang, T.-I. Ho, Excimer and intramolecular charge transfer chemiluminescence from electrogenerated ion radicals of donor–acceptor stilbenoids. Photochemical and Photobiological Sciences, 2 (2003) 1232−1236.
[55] S. Sahu, Y. Sikdar, R. Bag, D.K. Maiti, J.P. Cerón–Carrasco, S. Goswami, Visual detection of fluoride ion based on ICT mechanism. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 213 (2019) 354–360. 
[56] N. DiCesare, J.R. Lakowicz, New Sensitive and Selective Fluorescent Probes for Fluoride Using Boronic Acids. Analytical Biochemistry, 301 (2002) 111−116.
[57] K. Kobiro, Y. Inoue, A New Chiral Probe for Sulfate Anion:  UV, CD, Fluorescence, and NMR Spectral Studies of 1:1 and 2:1 Complex Formation and Structure of Chiral Guanidinium−p-Dimethylaminobenzoate Conjugate with Sulfate Anion. Journal of the American Chemical Society, 125 (2003) 421–427.
[58] H.N. Kim, J.H. Moon, S.K. Kim, J.Y. Kwon, Y.J. Jang, J.Y. Lee, J. Yoon, Fluorescent Sensing of Triphosphate Nucleotides via Anthracene Derivatives. The Journal of Organic Chemistry, 76 (2011) 3805–3811.
[59] D.C. Santra,  M.K. Bera, P.K. Sukul, S. Malik, Charge‐Transfer‐Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid. Chemistry—A European Journal, 22 (2016) 2012−2019.
[60] C.F. Chen, Q.Y. Chen, A tetra-sulfonamide derivative bearing two dansyl groups designed as a new fluoride selective fluorescent chemosensor. Tetrahedron Letters, 45 (2004) 3957–3960.
[61] S. Goswami, R. Chakrabarty, An imidazole based colorimetric sensor for fluoride anion. Chemistry – A European Journal, 2 (2011) 410–415.
[62] Y.-A. Son, S.-Y. Gwon, S.-H. Kim, Chromene and Imidazole Based D-π-A Chemosensor Preparation and its Anion Responsive Effects. Molecular Crystals and Liquid Crystals, 599 (2014) 16–22.
[63] A.D. Ghosh, A. Jose, R. Kaushik, Anthraquinones as versatile colorimetric reagent for anions. Sensors and Actuators B: Chemical, 229 (2016) 545−560.
[64] G.W. Lee, N.K. Kim, K.S. Jeong, Synthesis of Biindole−Diazo Conjugates as a Colorimetric Anion Receptor. Organic Letters, 12 (2010) 2634–2637.
[65] D.H. Lee, J.H. Im, S.U. Son, Y.K. Chung, J.-I. Hong, An Azophenol-based Chromogenic Pyrophosphate Sensor in Water. Journal of the American Chemical Society, 125 (2003) 7752−7753.
[66] F. Sancenon, R. Martınez-Manez, A. Soto, A Selective Chromogenic Reagent for Nitrate. Angewandte Chemie International Edition, 41 (2002) 1416−1419.
[67] X. Peng, Y. Wu, J. Fan, M. Tianand, K. Han, Colorimetric and Ratiometric Fluorescence Sensing of Fluoride:  Tuning Selectivity in Proton Transfer. The Journal of Organic Chemistry, 70 (2005) 10524–10531.
[68] S. Saha, A. Ghosh, P. Mahato, S. Mishra, S.K. Mishra, E. Suresh, S. Das, A. Das, Specific Recognition and Sensing of CN in Sodium Cyanide Solution. Organic Letters, 12 (2010) 3406–3409.
[69] R.M.F. Batista, S.P.G. Costa, M. Belsley, M.M.M. Raposo, Synthesis and Characterization of New Push-Pull Anthraquinones Bearing an Arylthienyl-Imidazo Conjugation Pathway as Efficient Nonlinear Optical Chromophores. Materials Science Forum, 636−637 (2010) 387−391.
[70] G.‒Y. Li, G.‒J. Zhao, Y.‒H. Liu, K.‒L. Han, G.‒Z. He, TD‐DFT study on the sensing mechanism of a fluorescent chemosensor for fluoride: Excited‐state proton transfer. Journal of Computational Chemistry, 31 (2010) 1759−1765.
[71] N. Kumari, S. Jha, S. Bhattacharya, Colorimetric Probes Based on Anthraimidazolediones for Selective Sensing of Fluoride and Cyanide Ion via Intramolecular Charge Transfer. The Journal of Organic Chemistry, 76 (2011) 8215–8222.
[72] V. Luxami, S. Kumar, A differential ICT based molecular probe for multi-ions and multifunction logic circuits. Dalton Transactions, 41 (2012) 4588–4593.
[73] R.M.F. Batista, S.P.G. Costa, M.M.M. Raposo, Naphthyl-imidazo-anthraquinones as novel colorimetric and fluorimetric chemosensors for ion sensing. Journal of Photochemistry and Photobiology A, 259 (2013) 33–40.
[74] C.M. Hernández, L.E.S. Figueroa, M.E. Moragues, M.M.M. Raposo, R.M.F. Batista, S.P.G. Costa, T. Pardo, R.M. Máñez, F. Sancenón, Imidazoanthraquinone Derivatives for the Chromofluorogenic Sensing of Basic Anions and Trivalent Metal Cations. The Journal of Organic Chemistry, 79 (2014) 10752–10761.
[75] R.M.F. Batista, S.P.G. Costa, R.M.M. Raposo, Selective colorimetric and fluorimetric detection of cyanide in aqueous solution using novel heterocyclic imidazo-anthraquinones. Sensors and Actuators B: Chemical, 191 (2014) 791–799.
[76] A. Paul, M. Perween, S. Saha, D.N. Srivastava, A. Das, A rapid conductometric sensor for analysis of cyanide using imidazole based receptor. Physical Chemistry Chemical Physics, 17 (2015) 26790−26796.
[77] S.A. Kumar, N.S.K. Asthana, K.K. Upadhyay, A smart ratiometric red fluorescent chemodosimeter for fluoride based on anthraquinone nosylate. New Journal of Chemistry, 41 (2017) 5098−5104.
[78] R. Bhaskar, V. Vijayakumar, V. Srinivasadesikan, S.-L. Lee, S. Sarveswari, Rationally designed imidazole derivative as colorimetric and fluorometric sensor for selective, qualitative and quantitative cyanide ion detection in real time samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 234 (2020) 118212−118221.
[79] C. Zhaoa, X. Konga, S. Shuanga, Y. Wanga, C. Dongb, An anthraquinone-imidazole-based colorimetric and fluorescent sensor for the sequential detection of Ag+ and biothiols in living cells. Analyst, 145 (2020) 3029−3037
[80] B.K Sharma, A.M Shaikh, S. Chacko, R.M. Kamble, Synthesis and optoelectronic investigation of triarylamines based on imidazoanthraquinone as donor–acceptors for n-type materials. Journal of Chemical Sciences, 130 (2018).
[81] X. Gao, Y. Zhang, B. Wang, New Boronic Acid Fluorescent Reporter Compounds. 2. A Naphthalene-Based On−Off Sensor Functional at Physiological pH. Organic Letters, 5 (2003) 4615–4618.
[82] R. Badugu, J.R. Lakowicz, C.D. Geddes, Enhanced Fluorescence Cyanide Detection at Physiologically Lethal Levels:  Reduced ICT-Based Signal Transduction. Journal of the American Chemical Society, 127 (2005) 3635–3641.
[83] S. Malkondu, S. Erdemir, A triphenylamine based multi-analyte chemosensor for Hg2+ and Cu2+ ions in MeCN/H2O. Tetrahedron, 70 (2014) 5494−5498.
[84] L. Wenfeng, M. Hengchang, L. Con, M. Yuan, Q. Chunxuan, Z. Zhonwei, Y. Zengming, C. Haiying, L. ziqiang, A self-assembled triphenylamine-based fluorescent chemosensor for selective detection of Fe3+ and Cu2+ ions in aqueous solution. RSC Advances, 5 (2015) 6869−6878.
[85] J. Naimhwak, V. Uahengo, A naphthoquinone based colorimetric probe for real-time naked eye detection of biologically important anions including cyanide ions in tap water: experimental and theoretical studies. RSC Advances, 9 (2019) 37926−37938.
[86] S. Ji, J. Yang, Q. Yang, S. Liu, M. Chen, J. Zhao, Tuning the Intramolecular Charge Transfer of Alkynylpyrenes: Effect on Photophysical Properties and Its Application in Design of OFF−ON Fluorescent Thiol Probes. The Journal of Organic Chemistry, 74 (2009) 4855–4865.
[87] H.A. Benesi, J.H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. Journal of the American Chemical Society, 71 (1949) 2703–2707.
[88] M. Takeshita, S. Shinkai, Novel Fluorometric Sensing of Ammonium Ions by Pyrene Functionalized Homotrioxacalix[3]arenes. Chemistry Letters, 23 (1994) 125–128.
[89] L. Martin, A. Leon, A.I. Olives, B. del Castillo, M.A. Martin, Spectrofluorimetric determination of stoichiometry and association constants of the complexes of harmane and harmine with beta-cyclodextrin and chemically modified beta-cyclodextrins. Talanta, 60 (2003) 493–503.
[90] M. Kádár, A. Biró, K. Tóth, B. Vermes, P. Huszthy, Spectrophotometric determination of the dissociation constants of crown ethers with grafted acridone unit in methanol based on Benesi-Hildebrand evaluation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 62 (2005) 1032–1038.
[91] S. Goswami, D. Sen, N.K. Das, H.-K. Fun, C.K. Quah, A new rhodamine based colorimetric ‘off–on’ fluorescence sensor selective for Pd2+ along with the first bound X-ray crystal structure. Chemical Communications, 47 (2011) 9101–9103.
[92] T.D. Gauthier, E.C. Shane, W.F. Guerln, W.R. Seltz, C.L. Grant, Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environmental Science & Technology, 20 (1986) 1162–1166.
[93] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, second ed., Kluwer Academic, Plenum Publishers, New York, (1999).
[94] J.Y. Zhao, D.J. Nelson, Fluorescence study of the interaction of Suwannee River fulvic acid with metal ions and Al3+-metal ion competition. Journal of Inorganic Biochemistry, 99 (2005) 383–396