ISC, CAS, Google Scholar     h-index: 20

Document Type : Original Research Article

Authors

1 Department of Materials Engineering, School of Engineering, Yasouj University, Yasouj, Iran

2 Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran

Abstract

The main aim of this project is to fabricate a nickel-based nanocomposite coating reinforced with B4C nanocomposite coating by the means of pulse electrodeposition technique in nickel sulfate bath under high deposition rate and study the impact of pulse parameters on surface morphology and tribological properties. The coating surface morphology, chemical composition, microstructure, microhardness, surface topography, and ultimately wear behavior of coatings were assessed through scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Vickers hardness, atomic force microscopy, and pin-on-disk wear test, respectively. By the incorporation of B4C nanoparticles into the nickel matrix, the surface morphology was altered from pyramid to nodular structure. The maximum B4C incorporation was recorded to be 6.45 vol.% at 10 A/dm2, γ = 50%, and 10 Hz. The crystallite size of nickel crystallographic planes (111) and (200) reduced, so was the grain size. The microhardness of all composite samples was significantly enhanced. The weight loss and wear rate values of Ni-B4C composites were diminished and the minimum weight loss in the form of weight gain was dedicated to Ni-B4C sample fabricated at 10 A/dm2, by the -0.23 mg amount. The friction coefficient and average roughness were significantly increased. Notably, the wear morphology indicated the dominancy of adhesive wear specially in pure nickel sample, but it turned out to be abrasive wear for almost all Ni-B4C samples in which the its reduction was associated with the decrement of adhesion, plastic deformation, delamination, ploughing, and also a bit abrasive type of wear. Overall, the Ni-B4C sample fabricated at 10 A/dm2, γ = 50%, and 10 Hz, experienced the optimum wear resistance.

Graphical Abstract

Influence of Incorporating B4C Nanoparticles and Pulse Electrodeposition Parameters on the Surface Morphology and Wear Behavior of Nickel Based Nanocomposite Coatings

Keywords

Main Subjects

  1. Lee WH, Tang SC, Chung KC. Effects of direct current and pulse-plating on the co-deposition of nickel and nanometer diamond powder, Surface and Coatings Technology; 1999 Nov 1; 120:607-11. https://doi.org/10.1016/S0257-8972(99)00445-4
  2. Ouyang JH, Liang XS, Wen J, Liu ZG, Yang ZL. Electrodeposition and tribological properties of self-lubricating Ni–BaCr2O4 composite coatings, Wear; 2011 Jul 29; 271(9-10):2037-45. https://doi.org/10.1016/j.wear.2010.12.035
  3. Singh S, Samanta S, Das AK, Sahoo RR. Tribological investigation of Ni-graphene oxide composite coating produced by pulsed electrodeposition, Surfaces and Interfaces; 2018 Sep 1; 12:61-70. https://doi.org/10.1016/j.surfin.2018.05.001
  4. Bahrololoom ME, Sani R. The influence of pulse plating parameters on the hardness and wear resistance of nickel–alumina composite coatings, Surface and Coatings Technology; 2005 Mar 21; 192(2-3):154-63. https://doi.org/10.1016/j.surfcoat.2004.09.023
  5. Sun C, Liu X, Zhou C, Wang C, Cao H. Preparation and wear properties of magnetic assisted pulse electrodeposited Ni–SiC nanocoatings, Ceramics International; 2019 Jan 1; 45(1):1348-55. https://doi.org/10.1016/j.ceramint.2018.07.242
  6. Gül H, Kılıç F, Uysal M, Aslan S, Alp A, Akbulut H. Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition, Applied Surface Science; 2012 Mar 1; 258(10):4260-7. https://doi.org/10.1016/j.apsusc.2011.12.069
  7. Mahidashti Z, Aliofkhazraei M, Lotfi N. Review of nickel-based electrodeposited tribo-coatings, Transactions of the Indian Institute of Metals; 2018 Feb; 71:257-95.
  8. Benea L, Bonora PL, Borello A, Martelli S. Wear corrosion properties of nano-structured SiC–nickel composite coatings obtained by electroplating, Wear; 2001 Nov 1; 249(10-11):995-1003. https://doi.org/10.1016/S0043-1648(01)00844-4
  9. Al-Asadi MM, Al-Tameemi HA. A review of tribological properties and deposition methods for selected hard protective coatings, Tribology International; 2022 Sep 7; 107919. https://doi.org/10.1016/j.triboint.2022.107919
  10. Sun D, Zhu L, Cai Y, Yan Y, Ge F, Shan M, Tian Y, Han J, Jiang Z. Tribology comparison of laser-cladded CrMnFeCoNi coatings reinforced by three types of ceramic (TiC/NbC/B4C), Surface and Coatings Technology; 2022 Nov 25; 450:129013. https://doi.org/10.1016/j.surfcoat.2022.129013
  11. Yu Z, Chen M, Kong X, Sun W, Wang F. Achieving well-balanced mechanical and tribological properties of copper matrix self-lubricating composites by adding pre-metallized B4C particles with core-shell microstructure, Ceramics International; 2023 Jun 15; 49(12):20613-22. https://doi.org/10.1016/j.ceramint.2023.03.192
  12. Algul H, Gul H, Uysal M, Alp A, Akbulut H. Tribological properties of TiO 2 reinforced nickel based MMCs produced by pulse electrodeposition technique, Transactions of the Indian Institute of Metals; 2015 Feb; 68:79-87.
  13. Zhang Y, Feng L, Qiu W. Enhancement of the wear resistance of Ni-diamond composite coatings via glycine modification, Diamond and Related Materials; 2020 Nov 1; 109:108086. https://doi.org/10.1016/j.diamond.2020.108086
  14. Sajjadnejad M, Ghorbani M, Afshar A. Microstructure-corrosion resistance relationship of direct and pulse current electrodeposited Zn-TiO2 nanocomposite coatings, Ceramics International; 2015 Jan 1; 41(1):217-24. https://doi.org/10.1016/j.ceramint.2014.08.061
  15. Arman SY, Omidvar H, Tabaian SH, Sajjadnejad M, Fouladvand S, Afshar S. Evaluation of nanostructured S-doped TiO2 thin films and their photoelectrochemical application as photoanode for corrosion protection of 304 stainless steel, Surface and Coatings Technology; 2014 Jul 25; 251:162-9. https://doi.org/10.1016/j.surfcoat.2014.04.020
  16. Azizi F, Heidari F, Fahimipour F, Sajjadnejad M, Vashaee D, Tayebi L. Evaluation of mechanical and biocompatibility properties of hydroxyapatite/manganese dioxide nanocomposite scaffolds for bone tissue engineering application, International Journal of Applied Ceramic Technology; 2020 Sep; 17(5):2439-49. https://doi.org/10.1111/ijac.13549
  17. Heidari F, Tavangar M, Sinaei M, Sajjadnejad M, Baseri I. Investigation of Corrosion Behavior of Hydroxyapatite/Zirconia/Chitosan Nanocomposite Coatings Produced by Electrophoretic Deposition, Surface Engineering and Applied Electrochemistry; 2022 Dec; 58(6):682-92.
  18. Moghanian A, Nasiripour S, Miri Z, Hajifathali Z, Hosseini SH, Sajjadnejad M, Aghabarari R, Nankali N, Miri AK, Tahriri M. Structural and in vitro biological evaluation of sol-gel derived multifunctional Ti+ 4/Sr+ 2 co-doped bioactive glass with enhanced properties for bone healing, Ceramics International; 2021 Oct 15; 47(20):29451-62. https://doi.org/10.1016/j.ceramint.2021.07.113
  19. Omidvar H, Sajjadnejad M, Stremsdoerfer G, Meas Y, Mozafari A. Characterization of NiBP-graphite composite coatings deposited by dynamic chemical plating, Anti-Corrosion Methods and Materials; 2015 Mar 2; 62(2):116-22. https://doi.org/10.1108/ACMM-11-2013-1320
  20. Omidvar H, Sajjadnejad M, Stremsdoerfer G, Meas Y, Mozafari A. Composite NiB–graphite and NiB–PTFE surface coatings deposited by the dynamic chemical plating technique, Materials and Manufacturing Processes; 2016 Jan 2; 31(1):24-30. https://doi.org/10.1080/10426914.2015.1004691
  21. Omidvar H, Sajjadnejad M, Stremsdoerfer G, Meas Y, Mozafari A. Manufacturing ternary alloy NiBP-PTFE composite coatings by dynamic chemical plating process, Materials and Manufacturing Processes; 2016 Jan 2; 31(1):31-6. https://doi.org/10.1080/10426914.2014.994753
  22. Sajjadnejad M, Abadeh HK. Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents, International Journal of Materials and Metallurgical Engineering; 2020 Jan 1; 14(2):45-8. https://doi.org/10.5281/zenodo.3669234
  23. Sajjadnejad M, Karimi Abadeh H. Kinetics of photocatalytic degradation of methylene blue on nanostructured TiO2 coatings created by sol-gel process, Advanced Ceramics Progress; 2019 Mar 1; 5(1):1-8. https://doi.org/10.30501/acp.2019.93123
  24. Sajjadnejad M, Karimi Abadeh H. Processing of nanostructured TiO2 and modification of its photocatalytic behavior for methylene blue degradation, Advanced Journal of Chemistry Section A; 2020; 3(4):422-31.
  25. Sajjadnejad M, Mozafari A, Omidvar H, Javanbakht M. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–SiC nanocomposite coatings, Applied Surface Science; 2014 May 1; 300:1-7. https://doi.org/10.1016/j.apsusc.2013.12.143
  26. Setoudeh N, Zamani C, Sajjadnejad M. Mechanochemical synthesis of nanostructured MgXNi1-XO compound by Mg-NiO mixture, Journal of Ultrafine Grained and Nanostructured Materials; 2017 Jun 1; 50(1):51-9. https://doi.org/10.7508/jufgnsm.2017.01.07
  27. Sohrabi H, Tabaian SH, Omidvar H, Sajjadnejad M, Mozafari A. Synthesis of nanostructured TiO2 coatings by Sol-Gel method: structural and morphological studies, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry; 2016 Mar 3; 46(3):414-22. https://doi.org/10.1080/15533174.2014.988231
  28. Sohrabi H, Mozafari A, Sajjadnejad M, Tabaian SH, Omidvar H. Influence of operational parameters on the TiO2 photocatalytic degradation of Methylene blue, Materials Science and Technology; 2016 Aug 12; 32(12):1282-8. https://doi.org/10.1080/02670836.2015.1116762
  29. Chassaing E, Portail N, Levy AF, Wang G. Characterisation of electrodeposited nanocrystalline Ni–Mo alloys, Journal of applied electrochemistry; 2004 Nov; 34(11):1085-91.
  30. Noorbakhsh Nezhad AH, Rahimi E, Arefinia R, Davoodi A, Hosseinpour S. Effect of substrate grain size on structural and corrosion properties of electrodeposited nickel layer protected with self-assembled film of stearic acid, Materials; 2020 Apr 28; 13(9):2052. https://doi.org/10.3390/ma13092052
  31. Sajjadnejad M, Haghshenas SM, Badr P, Setoudeh N, Hosseinpour S. Wear and tribological characterization of nickel matrix electrodeposited composites: A review, Wear; 2021 Dec 15; 486:204098. https://doi.org/10.1016/j.wear.2021.204098
  32. Sajjadnejad M, Haghshenas SM, Badr P, Setoudeh N, Hosseinpour S. Wear and tribological characterization of nickel matrix electrodeposited composites: A review,Wear; 2021 Dec 15; 486:204098. https://doi.org/10.1016/j.wear.2021.204098
  33. Sajjadnejad M, Setoudeh N, Mozafari A, Isazadeh A, Omidvar H. Alkaline electrodeposition of Ni–ZnO nanocomposite coatings: effects of pulse electroplating parameters, Transactions of the Indian Institute of Metals; 2017 Aug; 70:1533-41.
  34. Sajjadnejad M, Abadeh HK, Omidvar H, Hosseinpour S. Assessment of Tribological behavior of nickel-nano Si3N4 composite coatings fabricated by pulsed electroplating process, Surface Topography: Metrology and Properties; 2020 Apr 20; 8(2):025009. 1088/2051-672X/ab7ae5
  35. Sajjadnejad M, Omidvar H, Javanbakht M. Influence of pulse operational parameters on pure nickel electrodeposits: Part II. Microhardness and corrosion resistance, Surface Engineering; 2017 Feb 1; 33(2):94-101. https://doi.org/10.1080/02670844.2015.1122140
  36. Sajjadnejad M, Haghshenas SM, Targhi VT, Setoudeh N, Hadipour A, Moghanian A, Hosseinpour S. Wear behavior of alkaline pulsed electrodeposited nickel composite coatings reinforced by ZnO nanoparticles, Wear; 2021 Mar 15; 468:203591. https://doi.org/10.1016/j.wear.2020.203591
  37. Liu T, Guo Z, Wang Z, Wang M. Structure and corrosion resistance of nickel foils deposited in a vertical gravity field, Applied surface science; 2010 Sep 1; 256(22):6634-40. https://doi.org/10.1016/j.apsusc.2010.04.062
  38. Narasimman P, Pushpavanam M, Periasamy VM. Wear and scratch resistance characteristics of electrodeposited nickel-nano and micro SiC composites, Wear; 2012 Jul 15; 292:197-206. https://doi.org/10.1016/j.wear.2012.05.009
  39. Sohrabi A, Dolati A, Ghorbani M, Barati MR, Stroeve P. Elucidation of the structural texture of electrodeposited Ni/SiC nanocomposite coatings, The Journal of Physical Chemistry C; 2012 Feb 16; 116(6):4105-18. https://doi.org/10.1021/jp2095714
  40. Sajjadnejad M, Omidvar H, Javanbakht M, Pooladi R, Mozafari A. Direct current electrodeposition of Zn and Zn–SiC nanocomposite coatings, Transactions of the IMF; 2014 Jul 1; 92(4):227-32. https://doi.org/10.1179/0020296714Z.000000000187
  41. Sajjadnejad M, Haghshenas SM, Targhi VT, Setoudeh N, Hadipour A, Moghanian A, Hosseinpour S. Wear behavior of alkaline pulsed electrodeposited nickel composite coatings reinforced by ZnO nanoparticles, Wear; 2021 Mar 15; 468:203591. https://doi.org/10.1016/j.wear.2020.203591
  42. Sajjadnejad M, Omidvar H, Javanbakht M. Influence of pulse operational parameters on electrodeposition, morphology and microstructure of Ni/nanodiamond composite coatings, International Journal of Electrochemical Science; 2017 Feb 1; 12(5):3635-51. https://doi.org/10.20964/2017.05.52
  43. Sajjadnejad M, Omidvar H, Javanbakht M, Mozafari A. Characterization of pure nickel coatings fabricated under pulse current conditions, International Journal of Materials and Metallurgical Engineering; 2015 Oct 2; 9(8):1061-5. https://doi.org/10.5281/zenodo.1109912
  44. Sajjadnejad M, Setoudeh N, Mozafari A, Isazadeh A, Omidvar H. Alkaline electrodeposition of Ni–ZnO nanocomposite coatings: effects of pulse electroplating parameters, Transactions of the Indian Institute of Metals; 2017 Aug; 70:1533-41.
  45. Algul H, Tokur M, Ozcan S, Uysal M, Çetinkaya T, Akbulut H, Alp A. The effect of graphene content and sliding speed on the wear mechanism of nickel–graphene nanocomposites, Applied Surface Science; 2015 Dec 30; 359:340-8. https://doi.org/10.1016/j.apsusc.2015.10.139
  46. Aruna ST, Bindu CN, Selvi VE, Grips VW, Rajam KS. Synthesis and properties of electrodeposited Ni/ceria nanocomposite coatings, Surface and Coatings Technology; 2006 Aug 1; 200(24):6871-80. https://doi.org/10.1016/j.surfcoat.2005.10.035
  47. Boonyongmaneerat Y, Saengkiettiyut K, Saenapitak S, Sangsuk S. Effects of WC addition on structure and hardness of electrodeposited Ni–W, Surface and Coatings Technology; 2009 Aug 25; 203(23):3590-4. https://doi.org/10.1016/j.surfcoat.2009.05.027
  48. Sajjadnejad M, Omidvar H, Javanbakht M, Mozafari A. Textural and structural evolution of pulse electrodeposited Ni/diamond nanocomposite coatings, Journal of Alloys and Compounds; 2017 May 15; 704:809-17. https://doi.org/10.1016/j.jallcom.2016.12.318
  49. Setoudeh N, Sajjadnejad M. Production of Ni-ZnO nanocomposite by two methods of electrodeposition and mechanochmical synthesis and studying its characteristics as corrosion and wear resistant coating in industrial parts and also investigation their capability for electro-catalyst applications, Iran national Science Foundation, Research; 2017(92004488).
  50. Zhang Y, Zhang S, He Y, Li H, He T, Fan Y, Zhang H. Mechanical properties and corrosion resistance of pulse electrodeposited Ni-B/B4C composite coatings, Surface and Coatings Technology; 2021 Sep 15; 421:127458. https://doi.org/10.1016/j.surfcoat.2021.127458
  51. Zhu H, Niu Y, Lin C, Huang L, Ji H, Zheng X. Microstructures and tribological properties of vacuum plasma sprayed B4C–Ni composite coatings, Ceramics International; 2013 Jan 1; 39(1):101-10. https://doi.org/10.1016/j.ceramint.2012.05.101
  52. Paydar S, Jafari A, Bahrololoom ME, Mozafari V. Influence of BN and B4C particulates on wear and corrosion resistance of electroplated nickel matrix composite coatings, Tribology-Materials, Surfaces & Interfaces; 2015 Jun 1; 9(2):105-10. https://doi.org/10.1179/1751584X15Y.0000000007
  53. Shrestha NK, Kawai M, Saji T. Co-deposition of B4C particles and nickel under the influence of a redox-active surfactant and anti-wear property of the coatings, Surface and Coatings Technology; 2005 Dec 21; 200(7):2414-9. https://doi.org/10.1016/j.surfcoat.2004.08.192
  54. Sajjadnejad M, Abadeh HK, Omidvar H, Hosseinpour S. Assessment of Tribological behavior of nickel-nano Si3N4 composite coatings fabricated by pulsed electroplating process, Surface Topography: Metrology and Properties; 2020 Apr 20; 8(2):025009. 1088/2051-672X/ab7ae5
  55. Ren Z, Meng N, Shehzad K, Xu Y, Qu S, Yu B, Luo JK. Mechanical properties of nickel-graphene composites synthesized by electrochemical deposition, Nanotechnology; 2015 Jan 20; 26(6):065706. 1088/0957-4484/26/6/065706
  56. Rabinowicz E., "The least wear," Wear, 1984, 100 (1-3) 533-541. https://doi.org/10.1016/0043-1648(84)90031-0
  57. Wang W, Hou FY, Wang H, Guo HT. Fabrication and characterization of Ni–ZrO2 composite nano-coatings by pulse electrodeposition, Scripta Materialia; 2005 Sep 1; 53(5):613-8. https://doi.org/10.1016/j.scriptamat.2005.04.002
 
 

HOW TO CITE THIS ARTICLE

Mohammad Sajjadnejad*, P. Badr, S.M.S Haghshenas. Influence of Incorporating B4C Nanoparticles and Pulse Electrodeposition Parameters on the Surface Morphology and Wear Behavior of Nickel Based Nanocomposite Coatings.Prog. Chem. Biochem. Res, 6(4) (2023) 292-313

DOI: 10.48309/pcbr.2023.394780.1261