Document Type: Review Article


1 Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran 11155‐8639, Iran

2 Farabi Research Center, Jam, Bushehr, Iran

3 Department of Chemistry and Biochemistry, the Ohio State University, Columbus, OH, USA

4 Department of Chemistry, Sharif University of Technology, Tehran, Iran



Graphene quantum dots (GQDs), which are the most capable carbon-based nanostructures, play a significant role in biological studies. These nanostructures show significant attributes including low toxicity, high solubility in numerous solvents, notable electronic characteristics, strong chemical inertness, high specific surface areas, and abundant sites for functionalization. In addition, GQDs have adaptability as well as capability to be improved via absorbent surface chemicals as well as the addition of modifiers or nanoparticles. Accordingly, we have presented here the fundamental properties, synthesis techniques, and the applications of GQDs in biosensing, bioimaging, and drug delivery. It is worth mentioning that toxicity is a significant issue which has restricted biological applications of QDs. Hence, the toxicological features of GQDs have been covered in this review paper.

Graphical Abstract


Main Subjects


[1] S. Mohsenpour and A. Khosravanian, Influence of additives on the morphology of PVDF membranes based on phase diagram: Thermodynamic and experimental study. Journal of Applied Polymer Science,  135 (2018)  46225.

[2] A. Khosravanian, M. Dehghani, M. Pazirofteh, M. Asghari, A.H. Mohammadi and D. Shahsavari, Grand canonical Monte Carlo and molecular dynamics simulations of the structural properties, diffusion and adsorption of hydrogen molecules through poly (benzimidazoles)/nanoparticle oxides composites. International Journal of Hydrogen Energy,  43 (2018)  2803-2816.

[3] O. Adir, M. Poley, G. Chen, S. Froim, N. Krinsky, J. Shklover, J. Shainsky‐Roitman, T. Lammers and A. Schroeder, Integrating artificial intelligence and nanotechnology for precision cancer medicine. Advanced Materials,  32 (2020)  1901989.

[4] S. Abbasi-Moayed, M.R. Hormozi-Nezhad and M. Maaza, A multichannel single-well sensor array for rapid and visual discrimination of catecholamine neurotransmitters. Sensors and Actuators B: Chemical,  296 (2019)  126691.

[5] G. Dal Poggetto, S.S. Troise, C. Conte, R. Marchetti, F. Moret, A. Iadonisi, A. Silipo, R. Lanzetta, M. Malinconico and F. Quaglia, Nanoparticles decorated with folate based on a site-selective αCD-rotaxanated PEG-b-PCL copolymer for targeted cancer therapy. Polymer Chemistry, (2020) 

[6] H. Liu, C. Li, Y. Qian, L. Hu, J. Fang, W. Tong, R. Nie, Q. Chen and H. Wang, Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials,  232 (2020)  119700.

[7] M. Akbarzadeh, M. Babaei, K. Abnous, S.M. Taghdisi, M.T. Peivandi, M. Ramezani and M. Alibolandi, Hybrid silica-coated Gd-Zn-Cu-In-S/ZnS bimodal quantum dots as an epithelial cell adhesion molecule targeted drug delivery and imaging system. International journal of pharmaceutics,  570 (2019)  118645.

[8] W. Sun and F.G. Wu, Two‐Dimensional Materials for Antimicrobial Applications: Graphene Materials and Beyond. Chemistry–An Asian Journal,  13 (2018)  3378-3410.

[9] N. Samadi and S. Narimani, Simple and Sensitive Photoluminescent Detection of Meropenem Using Cit-Capped CdS Quantum Dots as a Fluorescence Probe. Analytical and Bioanalytical Chemistry Research,  6 (2019)  47-57.

[10] J. Tian, J. Chen, J. Liu, Q. Tian and P. Chen, Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy,  48 (2018)  284-291.

[11] X. Zhao, W. Gao, H. Zhang, X. Qiu and Y. Luo, Graphene quantum dots in biomedical applications: recent advances and future challenges, in Handbook of Nanomaterials in Analytical Chemistry. (2020), Elsevier.  493-505.

[12] B.D. Mansuriya and Z. Altintas, Applications of graphene quantum dots in biomedical sensors. Sensors,  20 (2020)  1072.

[13] A.M. Bayoumy, A. Refaat, I.S. Yahia, H.Y. Zahran, H. Elhaes, M.A. Ibrahim and M. Shkir, Functionalization of graphene quantum dots (GQDs) with chitosan biopolymer for biophysical applications. Optical and Quantum Electronics,  52 (2020)  16.

[14] A. Karimzadeh, M. Hasanzadeh, N. Shadjou and M. de la Guardia, Optical bio (sensing) using nitrogen doped graphene quantum dots: Recent advances and future challenges. TrAC Trends in Analytical Chemistry,  108 (2018)  110-121.

[15] B. Şenel, N. Demir, G. Büyükköroğlu and M. Yıldız, Graphene quantum dots: Synthesis, characterization, cell viability, genotoxicity for biomedical applications. Saudi Pharmaceutical Journal,  27 (2019)  846-858.

[16] A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.H. Kim, K.H. Lim, J. Li and P. Chen, Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Advanced Functional Materials,  24 (2014)  3021-3026.

[17] Z.G. Khan and P.O. Patil, A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols. Microchemical Journal, (2020)  105011.

[18] M. Shehab, S. Ebrahim and M. Soliman, Graphene quantum dots prepared from glucose as optical sensor for glucose. Journal of Luminescence,  184 (2017)  110-116.

[19] S. Benítez-Martínez and M. Valcárcel, Graphene quantum dots in analytical science. TrAC Trends in Analytical Chemistry,  72 (2015)  93-113.

[20] W. Chen, D. Li, L. Tian, W. Xiang, T. Wang, W. Hu, Y. Hu, S. Chen, J. Chen and Z. Dai, Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green chemistry,  20 (2018)  4438-4442.

[21] L. Wang, S.-J. Zhu, H.-Y. Wang, S.-N. Qu, Y.-L. Zhang, J.-H. Zhang, Q.-D. Chen, H.-L. Xu, W. Han and B. Yang, Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS nano,  8 (2014)  2541-2547.

[22] Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu and P. Chen, Recent advances on graphene quantum dots: from chemistry and physics to applications. Advanced Materials,  31 (2019)  1808283.

[23] X. Hai, J. Feng, X. Chen and J. Wang, Tuning the optical properties of graphene quantum dots for biosensing and bioimaging. Journal of Materials Chemistry B,  6 (2018)  3219-3234.

[24] P. Zheng and N. Wu, Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chemistry–An Asian Journal,  12 (2017)  2343-2353.

[25] C. Yan, X. Hu, P. Guan, T. Hou, P. Chen, D. Wan, X. Zhang, J. Wang and C. Wang, Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging. Journal of Materials Science,  55 (2020)  1198-1215.

[26] F. Salehnia, F. Faridbod, A.S. Dezfuli, M.R. Ganjali and P. Norouzi, Cerium (III) ion sensing based on graphene quantum dots fluorescent turn-off. Journal of fluorescence,  27 (2017)  331-338.

[27] K. Li, X. Zhao, G. Wei and Z. Su, Recent advances in the cancer bioimaging with graphene quantum dots. Current Medicinal Chemistry,  25 (2018)  2876-2893.

[28] D. Iannazzo, I. Ziccarelli and A. Pistone, Graphene quantum dots: Multifunctional nanoplatforms for anticancer therapy. Journal of Materials Chemistry B,  5 (2017)  6471-6489.

[29] J.P. Naik, P. Sutradhar and M. Saha, Molecular scale rapid synthesis of graphene quantum dots (GQDs). Journal of Nanostructure in Chemistry,  7 (2017)  85-89.

[30] A. Kalluri, D. Debnath, B. Dharmadhikari and P. Patra, Graphene quantum dots: synthesis and applications, in Methods in enzymology. (2018), Elsevier.  335-354.

[31] M.R. Hormozi-Nezhad, A. Moslehipour and A. Bigdeli, Simple and rapid detection of l-dopa based on in situ formation of polylevodopa nanoparticles. Sensors and Actuators B: Chemical,  243 (2017)  715-720.

[32] A. Moslehipour, Recent Advances in Fluorescence Detection of Catecholamines. Journal of Chemical Reviews, (2020)  130-147.

[33] A. Moslehipour, A. Bigdeli, F. Ghasemi and M.R. Hormozi-Nezhad, Design of a ratiometric fluorescence nanoprobe to detect plasma levels of levodopa. Microchemical Journal,  148 (2019)  591-596.

[34] T.-H. Kim, D. Lee and J.-W. Choi, Live cell biosensing platforms using graphene-based hybrid nanomaterials. Biosensors and Bioelectronics,  94 (2017)  485-499.

[35] E. Morales‐Narváez and A. Merkoçi, Graphene oxide as an optical biosensing platform: A progress report. Advanced Materials,  31 (2019)  1805043.

[36] P. Tian, L. Tang, K. Teng and S. Lau, Graphene quantum dots from chemistry to applications. Materials today chemistry,  10 (2018)  221-258.

[37] B.K. Walther, C.Z. Dinu, D.M. Guldi, V.G. Sergeyev, S.E. Creager, J.P. Cooke and A. Guiseppi-Elie, Nanobiosensing with graphene and carbon quantum dots: Recent advances. Materials Today, (2020) 

[38] T. Henna and K. Pramod, Graphene quantum dots redefine nanobiomedicine. Materials Science and Engineering: C,  110 (2020)  110651.

[39] E.B. Bahadır and M.K. Sezgintürk, Applications of graphene in electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry,  76 (2016)  1-14.

[40] A.A. Mastar, J. Abdullah, N.A. Yusof and Y.W. Fen, AN OPTICAL SENSOR BASED ON GRAPHENE QUANTUM DOTS FOR HYDROGEN PEROXIDE DETECTION. Malaysian Journal of Analytical Sciences,  23 (2019)  572-579.

[41] N. Cai, L. Tan, Y. Li, T. Xia, T. Hu and X. Su, Biosensing platform for the detection of uric acid based on graphene quantum dots and G-quadruplex/hemin DNAzyme. Analytica chimica acta,  965 (2017)  96-102.

[42] F. Cui, J. Ji, J. Sun, J. Wang, H. Wang, Y. Zhang, H. Ding, Y. Lu, D. Xu and X. Sun, A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells. Analytical and bioanalytical chemistry,  411 (2019)  985-995.

[43] B. Hatamluyi and Z. Es' haghi, Electrochemical biosensing platform based on molecularly imprinted polymer reinforced by ZnO–graphene capped quantum dots for 6-mercaptopurine detection. Electrochimica Acta,  283 (2018)  1170-1177.

[44] S. Yang, M. Chu, J. Du, Y. Li, T. Gai, X. Tan, B. Xia and S. Wang, Graphene quantum dot electrochemiluminescence increase by bio-generated H2O2 and its application in direct biosensing. Royal Society Open Science,  7 (2020)  191404.

[45] G. Jie, Q. Zhou and G. Jie, Graphene quantum dots-based electrochemiluminescence detection of DNA using multiple cycling amplification strategy. Talanta,  194 (2019)  658-663.

[46] C. Tian, L. Wang, F. Luan and X. Zhuang, An electrochemiluminescence sensor for the detection of prostate protein antigen based on the graphene quantum dots infilled TiO2 nanotube arrays. Talanta,  191 (2019)  103-108.

[47] L. He, L. Yang, H. Zhu, W. Dong, Y. Ding and J.-J. Zhu, A highly sensitive biosensing platform based on upconversion nanoparticles and graphene quantum dots for the detection of Ag+. Methods and Applications in Fluorescence,  5 (2017)  024010.

[48] L. Li, D. Liu, K. Wang, H. Mao and T. You, Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor. Sensors and Actuators B: Chemical,  252 (2017)  17-23.

[49] A. Beheshti-Marnani, A. Hatefi-Mehrjardi and Z. Es' haghi, A sensitive biosensing method for detecting of ultra-trace amounts of AFB1 based on “Aptamer/reduced graphene oxide” nano-bio interaction. Colloids and Surfaces B: Biointerfaces,  175 (2019)  98-105.

[50] X. Ren, H. Ma, T. Zhang, Y. Zhang, T. Yan, B. Du and Q. Wei, Sulfur-doped graphene-based immunological biosensing platform for multianalysis of cancer biomarkers. ACS applied materials & interfaces,  9 (2017)  37637-37644.

[51] D. Sharma, S. Kanchi, M.I. Sabela and K. Bisetty, Insight into the biosensing of graphene oxide: Present and future prospects. Arabian Journal of Chemistry,  9 (2016)  238-261.

[52] M. Thangamuthu, K.Y. Hsieh, P.V. Kumar and G.-Y. Chen, Graphene-and graphene oxide-based nanocomposite platforms for electrochemical biosensing applications. International journal of molecular sciences,  20 (2019)  2975.

[53] Z. Hassanvand and F. Jalali, Electrocatalytic determination of glutathione using transition metal hexacyanoferrates (MHCFs) of copper and cobalt electrode posited on graphene oxide nanosheets. Analytical and Bioanalytical Chemistry Research,  5 (2018)  115-129.

[54] S. Tajik and H. Beitollahi, A sensitive chlorpromazine voltammetric sensor based on graphene oxide modified glassy carbon electrode. Analytical and Bioanalytical Chemistry Research,  6 (2019)  171-182.

[55] N. Cheeveewattanagul, E. Morales‐Narváez, A.R.H. Hassan, J.F. Bergua, W. Surareungchai, M. Somasundrum and A. Merkoçi, Straightforward immunosensing platform based on graphene oxide‐decorated nanopaper: a highly sensitive and fast biosensing approach. Advanced Functional Materials,  27 (2017)  1702741.

[56] S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan and J. Yu, Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction. ACS Applied Materials & Interfaces,  9 (2017)  6670-6678.

[57] N. Li, R. Li, Z. Li, Y. Yang, G. Wang and Z. Gu, Pentaethylenehexamine and histidine-functionalized graphene quantum dots for ultrasensitive fluorescence detection of microRNA with target and molecular beacon double cycle amplification strategy. Sensors and Actuators B: Chemical,  283 (2019)  666-676.

[58] C. Conte, F. Moret, D. Esposito, G. Dal Poggetto, C. Avitabile, F. Ungaro, A. Romanelli, P. Laurienzo, E. Reddi and F. Quaglia, Biodegradable nanoparticles exposing a short anti-FLT1 peptide as antiangiogenic platform to complement docetaxel anticancer activity. Materials Science and Engineering: C,  102 (2019)  876-886.

[59] I. d'Angelo, G. Costabile, E. Durantie, P. Brocca, V. Rondelli, A. Russo, G. Russo, A. Miro, F. Quaglia and A. Petri-Fink, Hybrid lipid/polymer nanoparticles for pulmonary delivery of siRNA: development and fate upon in vitro deposition on the human epithelial airway barrier. Journal of Aerosol Medicine and Pulmonary Drug Delivery,  31 (2018)  170-181.

[60] B. Pourbadiei, R. Pyadar and F. Mansouri, pH-sensitive nanoscale polymers: highly efficient systems for DOX delivery in cancer treatment. J. Nanomed. Res,  5 (2017)  1-6.

[61] H. Faraji, R. Nedaeinia, E. Nourmohammadi, B. Malaekeh-Nikouei, H.R. Sadeghnia, S.P. Ziapour, H.K. Sarkarizi and R.K. Oskuee. A review on application of novel solid nanostructures in drug delivery. in Journal of Nano Research. 2018. Trans Tech Publ.

[62] A.K. Goyal, G. Rath, C. Faujdar and B. Malik, Application and perspective of pH-responsive nano drug delivery systems, in Applications of Targeted Nano Drugs and Delivery Systems. (2019), Elsevier.  15-33.

[63] J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M. del Pilar Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy and S. Sharma, Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology,  16 (2018)  71.

[64] C.E. Probst, P. Zrazhevskiy, V. Bagalkot and X. Gao, Quantum dots as a platform for nanoparticle drug delivery vehicle design. Advanced drug delivery reviews,  65 (2013)  703-718.

[65] J. Tashkhourian, M. Akhond, S. Hooshmand, T. Khosousi and B. Hemmateenejad, A Simple Image Analysis Method for Determination of Glucose by using Glucose Oxidase CdTe/TGA Quantum Dots. Analytical and Bioanalytical Chemistry Research,  1 (2014)  117-127.

[66] W. Gui, J. Zhang, X. Chen, D. Yu and Q. Ma, N-Doped graphene quantum dot@ mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery. Microchimica Acta,  185 (2018)  66.

[67] A. Chandra, S. Deshpande, D.B. Shinde, V.K. Pillai and N. Singh, Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery. ACS Macro Letters,  3 (2014)  1064-1068.

[68] K.L. Schroeder, R.V. Goreham and T. Nann, Graphene quantum dots for theranostics and bioimaging. Pharmaceutical research,  33 (2016)  2337-2357.

[69] Y. Xu, X. Hu, P. Guan, C. Du, Y. Tian, S. Ding, Z. Li and C. Yan, A novel controllable molecularly imprinted drug delivery system based on the photothermal effect of graphene oxide quantum dots. Journal of Materials Science,  54 (2019)  9124-9139.

[70] O.J. Achadu, I. Uddin and T. Nyokong, Fluorescence behavior of nanoconjugates of graphene quantum dots and zinc phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry,  317 (2016)  12-25.

[71] P. Gong, L. Zhang, X.-a. Yuan, X. Liu, X. Diao, Q. Zhao, Z. Tian, J. Sun, Z. Liu and J. You, Multifunctional fluorescent PEGylated fluorinated graphene for targeted drug delivery: An experiment and DFT study. Dyes and Pigments,  162 (2019)  573-582.

[72] S. Havanur, I. Batish, S.P. Cheruku, K. Gourishetti, P. JagadeeshBabu and N. Kumar, Poly (N, N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice. Materials Science and Engineering: C,  105 (2019)  110094.

[73] D. Iannazzo, A. Pistone, S. Ferro, L. De Luca, A.M. Monforte, R. Romeo, M.R. Buemi and C. Pannecouque, Graphene quantum dots based systems as HIV inhibitors. Bioconjugate chemistry,  29 (2018)  3084-3093.

[74] Y. Chen and H. Liang, Applications of quantum dots with upconverting luminescence in bioimaging. Journal of Photochemistry and Photobiology B: Biology,  135 (2014)  23-32.

[75] R. Bilan, I. Nabiev and A. Sukhanova, Quantum dot‐based nanotools for bioimaging, diagnostics, and drug delivery. ChemBioChem,  17 (2016)  2103-2114.

[76] N. Ilaiyaraja, S.J. Fathima and F. Khanum, Quantum dots: a novel fluorescent probe for bioimaging and drug delivery applications, in Inorganic Frameworks as Smart Nanomedicines. (2018), Elsevier.  529-563.

[77] M. Nurunnabi, Z. Khatun, M. Nafiujjaman, D.-g. Lee and Y.-k. Lee, Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS applied materials & interfaces,  5 (2013)  8246-8253.

[78] L. Sheng, B. Huangfu, Q. Xu, W. Tian, Z. Li, A. Meng and S. Tan, A highly selective and sensitive fluorescent probe for detecting Cr (VI) and cell imaging based on nitrogen-doped graphene quantum dots. Journal of Alloys and Compounds,  820 (2020)  153191.

[79] J. Su, X. Zhang, X. Tong, X. Wang, P. Yang, F. Yao, R. Guo and C. Yuan, Preparation of Graphene Quantum Dots with High Quantum Yield by A Facile One-step Method and Applications for Cell Imaging. Materials Letters, (2020)  127806.

[80] S. Badrigilan, B. Shaabani, N.G. Aghaji and A. Mesbahi, Graphene quantum dots-coated bismuth nanoparticles for improved CT imaging and photothermal performance. International Journal of Nanoscience,  19 (2020)  1850043.

[81] L. Cao, X. Li, L. Qin, S.-Z. Kang and G. Li, Graphene quantum dots supported by graphene oxide as a sensitive fluorescence nanosensor for cytochrome c detection and intracellular imaging. Journal of Materials Chemistry B,  5 (2017)  6300-6306.

[82] J. Chen, A. Than, N. Li, A. Ananthanarayanan, X. Zheng, F. Xi, J. Liu, J. Tian and P. Chen, Sweet graphene quantum dots for imaging carbohydrate receptors in live cells. FlatChem,  5 (2017)  25-32.

[83] J. Dong, K. Wang, L. Sun, B. Sun, M. Yang, H. Chen, Y. Wang, J. Sun and L. Dong, Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sensors and Actuators B: Chemical,  256 (2018)  616-623.

[84] Z. Fan, Y. Nie, Y. Wei, J. Zhao, X. Liao and J. Zhang, Facile and large-scale synthesis of graphene quantum dots for selective targeting and imaging of cell nucleus and mitochondria. Materials Science and Engineering: C,  103 (2019)  109824.

[85] M.K. Kumawat, M. Thakur, R.B. Gurung and R. Srivastava, Graphene quantum dots for cell proliferation, nucleus imaging, and photoluminescent sensing applications. Scientific reports,  7 (2017)  1-16.

[86] N. Li, A. Than, J. Chen, F. Xi, J. Liu and P. Chen, Graphene quantum dots based fluorescence turn-on nanoprobe for highly sensitive and selective imaging of hydrogen sulfide in living cells. Biomaterials science,  6 (2018)  779-784.

[87] R. Liu, J. Zhao, Z. Huang, L. Zhang, M. Zou, B. Shi and S. Zhao, Nitrogen and phosphorus co-doped graphene quantum dots as a nano-sensor for highly sensitive and selective imaging detection of nitrite in live cell. Sensors and Actuators B: Chemical,  240 (2017)  604-612.

[88] H.-F. Lu, M.-M. Zhang, D. Wu, J.-L. Huang, L.-L. Zhu, C.-M. Wang and Q.-L. Zhang, Colorimetric and fluorescent dual-mode sensing of alkaline phosphatase activity in L-02 cells and its application in living cell imaging based on in-situ growth of silver nanoparticles on graphene quantum dots. Sensors and Actuators B: Chemical,  258 (2018)  461-469.

[89] M. Nafiujjaman, H. Joon, K.S. Kwak and Y.-k. Lee, Synthesis of nitrogen-and chlorine-doped graphene quantum dots for cancer cell imaging. Journal of nanoscience and nanotechnology,  18 (2018)  3793-3799.

[90] F. Nasrollahi, Y.R. Koh, P. Chen, J. Varshosaz, A.A. Khodadadi and S. Lim, Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Materials Science and Engineering: C,  94 (2019)  247-257.

[91] G. Rajender, U. Goswami and P. Giri, Solvent dependent synthesis of edge-controlled graphene quantum dots with high photoluminescence quantum yield and their application in confocal imaging of cancer cells. Journal of colloid and interface science,  541 (2019)  387-398.

[92] H. Singh, S. Sreedharan, K. Tiwari, N.H. Green, C. Smythe, S.K. Pramanik, J.A. Thomas and A. Das, Two photon excitable graphene quantum dots for structured illumination microscopy and imaging applications: lysosome specificity and tissue-dependent imaging. Chemical communications,  55 (2019)  521-524.

[93] X. Su, C. Chan, J. Shi, M.-K. Tsang, Y. Pan, C. Cheng, O. Gerile and M. Yang, A graphene quantum dot@ Fe3O4@ SiO2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells. Biosensors and Bioelectronics,  92 (2017)  489-495.

[94] H. Wang, R. Revia, K. Wang, R.J. Kant, Q. Mu, Z. Gai, K. Hong and M. Zhang, Paramagnetic properties of metal‐free boron‐doped graphene quantum dots and their application for safe magnetic resonance imaging. Advanced materials,  29 (2017)  1605416.

[95] L. Wang, W. Li, B. Wu, Z. Li, D. Pan and M. Wu, Room-temperature synthesis of graphene quantum dots via electron-beam irradiation and their application in cell imaging. Chemical Engineering Journal,  309 (2017)  374-380.

[96] L. Wang, B. Wu, W. Li, Z. Li, J. Zhan, B. Geng, S. Wang, D. Pan and M. Wu, Industrial production of ultra-stable sulfonated graphene quantum dots for Golgi apparatus imaging. Journal of Materials Chemistry B,  5 (2017)  5355-5361.

[97] L. Wang, W. Li, M. Li, Q. Su, Z. Li, D. Pan and M. Wu, Ultrastable amine, sulfo cofunctionalized graphene quantum dots with high two-photon fluorescence for cellular imaging. ACS Sustainable Chemistry & Engineering,  6 (2018)  4711-4716.

[98] H. Wang, Q. Mu, K. Wang, R.A. Revia, C. Yen, X. Gu, B. Tian, J. Liu and M. Zhang, Nitrogen and boron dual-doped graphene quantum dots for near-infrared second window imaging and photothermal therapy. Applied materials today,  14 (2019)  108-117.

[99] S. Badrigilan, B. Shaabani, N. Gharehaghaji and A. Mesbahi, Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots:“Three-in-one” theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagnosis and photodynamic therapy,  25 (2019)  504-514.

[100] H.R. Kalhor and H. Ashrafian, Identification of an aspidospermine derivative from borage extract as an anti-amyloid compound: A possible link between protein aggregation and antimalarial drugs. Phytochemistry,  140 (2017)  134-140.

[101] D. Jiang, Y. Chen, N. Li, W. Li, Z. Wang, J. Zhu, H. Zhang, B. Liu and S. Xu, Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study. PLoS One,  10 (2015)  e0144906.

[102] S. Wang, I.S. Cole and Q. Li, The toxicity of graphene quantum dots. RSC Advances,  6 (2016)  89867-89878.

[103] D. Zhang, Z. Zhang, Y. Wu, K. Fu, Y. Chen, W. Li and M. Chu, Systematic evaluation of graphene quantum dot toxicity to male mouse sexual behaviors, reproductive and offspring health. Biomaterials,  194 (2019)  215-232.

 [104] A. Moslehipour, Synthesis of a fluorescent mechanochromic polymer based on TGA-capped CdTe Quantum Dots and liquid latex. Advanced Journal of Chemistry-Section B,  2 (2020)  179-186.