ISC, CAS, Google Scholar     h-index: 20

Document Type : Original Research Article


1 Department of Pure and Applied Chemistry, Faculty of Science, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State, Nigeria

2 Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria


The novel 2-[(E)-(3-phenylmethoxyphenyl)methylideneamin-o]guanidine was put forth as a potential anti-SARS-coronavirus-2 candidate targeting the spike glycoprotein following a docking simulation study. When compared with the standard medications (Chloroquine and Ruxolitinib) with a binding score of -4.8 kcal/mol and -7.0 kcal/mol, respectively, 2-[(E)-(3-phenylmethoxyphenyl) methylideneamino] guanidine's computed binding score of -7.2 kcal/mol indicated that it may have promising anti-SARS-coronavirus-2 activity. The accurate binding of 2-[(E)-(3-phenylmethoxyphenyl) methylideneamino] guanidine to the SARS-coronavirus-2 spike glycoprotein through the appropriate dynamic and energetic behaviours over 20 ns was verified by molecular dynamics simulations as well as MM/GBSA studies. Besides that, in silico ADME studies demonstrated 2-[(E)-(3-phenylmethoxyphenyl) methylidene-amino]guanidine's general safety and drug-likeness. As a result, the outcomes of this survey gave a strong basis for the in silico plan and hypothetical investigation of more potent SARS-coronavirus-2 inhibitors.

Graphical Abstract

Theoretical studies of 2-[(E)-(3-phenylmethoxyphenyl) methylideneamino]guanidine as promising drugs against SARS-coronavirus spike glycoproteins by molecular docking combined with molecular dynamics simulation and MM/GBSA calculation


Main Subjects

[1] G. A. Heinzl, W. Huang, W. Yu, B. J. Giardina, Y.  Zhou, Jr., A. D. MacKerell, A. Wilks, F. Xue, Iminoguanidines as Allosteric Inhibitors of the Iron-Regulated Heme Oxygenase (HemO) of Pseudomonas aeruginosa. Journal of Medicinal Chemistry, 59 (2016) 6929-6942.[2] E. I. Edache, A. Uzairu, P. A. Mamza, G. A. Shallangwa, A 2D-QSAR, Homology Modeling, Docking, ADMET, and Molecular Dynamics Simulations Studies for Assessment of a Novel SARS-Cov-2 and Pseudomonas Aeruginosa Inhibitors. Journal of Virology and Viral Diseases, 2 (2022) 1-28.
[3] E. I. Edache, A. Uzairu, P. A. Mamza, G. A. Shallangwa, QSAR, homology modeling, and docking simulation on SARS‑CoV‑2 and pseudomonas aeruginosa inhibitors, ADMET, and molecular dynamic simulations to find a possible oral lead candidate. Journal of Genetic Engineering and Biotechnology, 20 (2022) 88.DOI:
[4] R. Custelcean, Iminoguanidines: from anion recognition and separation to carbon capture. Chemical Communications, 56 (2020) 10272-10280.
[5] Q. Zhang, Y. Jiang, Y. Li, X. Song, X. Luo, Z. Ke, Y. Zou, Design, synthesis, and physicochemical study of a biomass-derived CO2 sorbent 2,5-furan-bis(iminoguanidine). iScience, 24 (2021) 102263.
[6] E. I. Edache, A. Uzairu, P. A. Mamza, G. A. Shallangwa, A comparative QSAR analysis, 3D-QSAR, molecular docking and molecular design of iminoguanidine-based inhibitors of HemO: A rational approach to antibacterial drug design. Journal of Drugs and Pharmaceutical Science, 4 (2020) 21-36.
[7] E. I. Edache, A. Uzairu, P. A. Mamza, G. A. Shallangwa, Theoretical Investigation of the Cooperation of Iminoguanidine with the Enzymes-Binding Domain of Covid-19 and Bacterial Lysozyme Inhibitors and their Pharmacokinetic Properties. Journal of Mexican Chemical Society, 66 (2022), 513-542.
[8] A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98 (1993) 5648-5652.
[9] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37 (1988) 785-789.
[10] G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al‐Laham, W. A. Shirley, A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. The Journal of Chemical Physics, 89 (1988) 2193-2218.
[11] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N.  Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Aramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, J.B. Farkas, J.V. Foresman, J. Ortiz, D.J. Cioslowski, Gaussian 09, Revision E. 01, Gaussian, Inc., 2013, Wallingford CT. 
[12] S. Dallakyan, A. J. Olson, Small-molecule library screening by docking with PyRx. Methods in molecular biology, 1263 (2015) 243–250.
[13] M. F. Sanner, Python: a programming language for software integration and development. Journal of molecular graphics & modelling, 17 (1999) 57–61.
[14] J. C. Phillips, D. J. H. Julio D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Henin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L. V. Kale, K. Schulten, C. Chipot, E. Tajkhorshid, Scalable molecular dynamics on CPU and GPU architectures with NAMD. Journal of Chemical Physics, 153 (2020) 044130;
[15] J. Lee, X. Cheng, J. M. Swails, M. S. Yeom, P. K. Eastman, J. A. Lemkul, S. Wei, J. Buckner, J. C. Jeong, Y. Qi, S. Jo, V. S. Pande, D. A. Case, C. L. Brooks, A. D. MacKerell, Jr, J. B. Klauda, W. Im, CHARMMGUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of Chemical Theory and Computation, 12 (2016) 405–413.
[16] W. Humphrey, A.  Dalke, K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 14 (1996) 33-38.51.
[17] E. Wang, H. Sun, J. Wang, Z. Wang, H. Liu, J. Z. H. Zhang, T. Hou, End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chemical Reviews, 119 (2019) 9478–9508.
[18] Q. Bai, S. Tan, T. Xu, H. Liu, J. Huang, X. Yao, MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Briefings in Bioinformatics, 22 (2021) bbaa161.
[19] R. D. Jawarkar, R. L. Bakal, N. Mukherjee, A. Ghosh, M. E. A. Zaki, S. A.  AL-Hussain, A. A. Al-Mutairi, A. Samad, A. Gandhi, V. H. Masand, QSAR Evaluations to Unravel the Structural Features in Lysine-Specific Histone Demethylase 1A Inhibitors for Novel Anticancer Lead Development Supported by Molecular Docking, MD Simulation and MMGBSA. Molecules, 27 (2022) 4758.
[20] F. A. Ugbe, G. A. Shallangwa, A. Uzairu, I. Abdulkadir, Activity modeling, molecular docking and pharmacokinetic studies of some boron-pleuromutilins as anti-wolbachia agents with potential for treatment of filarial diseases. Chemical Data Collections, 36 (2021) 100783.
[21] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46 (2001) 3–26.
[22] J. D. Hughes, J. Blagg, D. A. Price, S. Bailey, G. A. Decrescenzo, R. V. Devraj, E. Ellsworth, Y. M. Fobian, M. E. Gibbs, R. W. Gilles, N. Greene, E. Huang, T. Krieger-Burke, J. Loesel, T. Wager, L. Whiteley, Y. Zhang, Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic & medicinal chemistry letters, 18 (2008) 4872–4875.
[23] Gleeson, M.P. Generation of a set of simple, interpretable ADMET rules of thumb. Journal of Medicinal Chemistry, 51(2008) 817–834.
[24] T. W. Johnson, K. R. Dress, M. Edwards, Using the Golden Triangle to optimize clearance and oral absorption. Bioorganic & medicinal chemistry letters, 19 (2009) 5560–5564.
[25] J. Dong, N. N. Wang, Z. J.  Yao, L. Zhang, Y. Cheng, D. Ouyang, A. P. Lu, D. S. Cao, ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform, 10 (2018) 29.