ISC, CAS, Google Scholar     h-index: 20

Document Type : Original Research Article


Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran


Refrigerant fluids are widely used to reduce temperature in heat transfer systems and study of the thermal conductivity of these fluids is of great importance in design of heat transformers, pumps and refrigeration cycles. The main goal of this work is intended to serve as the assessment of corresponding states correlation of thermal conductivity in terms of pair interaction potential energy for R125, R134a, R12, R14 and R141b refrigerants, considering the anisotropy of potential interactions. In order to present a concise theoretical model for calculation of thermal conductivity, we first applied the extended Chapman-Enskog formalism and calculated the collision integrals and thermal conductivity values for R125, R134a, R12, R14 and R141b dilute fluids and subsequently, made a comparison between the computed results and the most accurate available experimental data. In this respect, the efficiency of intermolecular potential parameters to reproduce thermal conductivity values ​​of R125, R134a, R12, R14 and R141b refrigerants was assessed. In the next step, the effect of non-spherical potential energy functions and the contribution of internal degrees of freedom for the thermal conductivity of the mentioned refrigerants fluids have been formulated and led to more accurate computational results. Finally, we have shown that the present theoretical model provide a good overall account of the experimental thermal conductivity of these compounds, considering the stated uncertainty in the measurements.

Graphical Abstract

Thermal Conductivity and Anisotropy of Intermolecular Potential Energy in Refrigerant Fluids R125, R134a, R12, R14 and R141b


Main Subjects

  1. RK. Dreepaul, A study of alternative refrigerants for the refrigeration and air conditioning sector in Mauritius, IOP Conference Series: Earth and Environmental Science, 93(1),(2014)12054.
  2. M. Pierantozzi, G. Petrucci, Modeling thermal conductivity in refrigerants through neural networks, Fluid Phase Equilib, 460,(2018)36-44.
  3. VP. Venkataramanamurthy, PS. Kumar, Experimental Comparative energy, exergy flow and second law efficiency analysis of R22, R436b vapour compression refrigeration cycles, Int J Sci Technol, 2(5),(2010)1399-1412.
  4. AA. Amooey, A new equation for the thermal conductivity of liquid refrigerants over wide temperature and pressure ranges, J Eng Phys Thermophys, 90(2),(2017)392-396.
  5. MM. Papari, Transport properties of carbon dioxide from an isotropic and effective pair potential energy, Chem Phys288(2-3),(2003)249-259.
  6. J. Moghadasi, MM. Papari, A. Nekoie, J V. Sengers, Transport properties of some polyatomic gases from isotropic and effective pair potential energies (Part II). Chem Phys,306(1-3),(2004)229-240.
  7. D. Mohammad-Aghaie, MM. Papari, F. Zargari, Modeling Transport Properties of N2–Noble Gas Mixtures at Low and Moderate Densities, Bull Chem Soc Jpn. 85(5),(2012)563-575.
  8. J. Feng, J. Feng, C. Zhang, Thermal conductivity of low density carbon aerogels, J Porous Mater, 19(5),(2012)551-556.
  9. S. Bo, W. Xiao-Po, Y. Fu-Xin, L. Zhi-Gang, Transport properties of a binary mixture of CO2—N2 from the pair potential energy functions based on a semi-empirical inversion method, Chinese Phys B, 21(4),(2012)45101.
  10. MH. Karimi-Jafari, M. Ashouri, Quantifying the anisotropy of intermolecular potential energy surfaces: a critical assessment of available N 2–N 2 potentials, Phys Chem Chem Phys, 13(20),(2011)9887-9894.
  11. Z.Chen, M. Akbari, F. Forouharmanesh, et al, A new correlation for predicting the thermal conductivity of liquid refrigerants, J Therm Anal Calorim, 143(1),(2021)795-800.
  12. X. Wang, Y. Li, Y. Yan, E. Wright, N. Gao, G. Chen, Prediction on the viscosity and thermal conductivity of hfc/hfo refrigerants with artificial neural network models, Int J Refrig, 119,(2020)316-325.
  13. D. Kim, H. Liu, X. Yang, et al, Thermal conductivity measurements and correlations of pure R1243zf and binary mixtures of R32+ R1243zf and R32+ R1234yf, Int J Refrig, (2021).
  14. G. Haowen, W. Xilei, Z. Yuan, G. Zhikai, H. Xiaohong, C. Guangming, Experimental and Theoretical Research on the Saturated Liquid Thermal Conductivity of HFO-1336mzz (E), Ind Eng Chem Res, 60(26),(2021)9592-9601.
  15. T. Hosseinnejad, H. Behnejad, Viscosity and thermal conductivity of some refrigerants at moderate and high densities on the basis of Rainwater–Friend theory and the corresponding states principle, Fluid Phase Equilib, 263(1),(2008)85-95.
  16. J. Moghadasi, D. Mohammad-Aghaie ,MM Papari, Predicting gas transport coefficients of alternative refrigerant mixtures, Ind Eng Chem Res, 45(26),(2006)9211-9223.
  17. ML. Huber, A. Laesecke, RA. Perkins, Model for the viscosity and thermal conductivity of refrigerants, including a new correlation for the viscosity of R134a, Ind Eng Chem Res, 42(13),(2003)3163-3178.
  18. D. Liang, K. Guo, R. Wang, S. Fan, Hydrate equilibrium data of 1, 1, 1, 2-tetrafluoroethane (HFC-134a), 1, 1-dichloro-1-fluoroethane (HCFC-141b) and 1, 1-difluoroethane (HFC-152a), Fluid Phase Equilib. 187,(2001)61-70.
  19. M. McLinden, S. Klein, R. Perkins, An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures, Int J Refrig, 23(1),(2000)43-63.
  20. SB. Kiselev, RA. Perkins, ML. Huber, Transport properties of refrigerants R32, R125, R134a, and R125+ R32 mixtures in and beyond the critical region, Int J Refrig, 22(6),(1999)509-520.
  21. RA. Perkins, E. Schwarzberg, XP. Gao, Experimental thermal conductivity values for mixtures of R32, R125, R134a, and propane, (1999).
  22. B. Le Neindre, Y. Garrabos, Measurements of the Thermal Conductivity of HFC-125 in the Temperature Range from 300 to 515 K at Pressures up to 53 MPa, Int J Thermophys, 20(2),(1999)375-399.
  23. J. Yata, M. Hori, K. Kobayashi, T. Minamiyama, Thermal conductivity of alternative refrigerants in the liquid phase, Int J Thermophys, 17(3),(1996)561-571.
  24. MJ. Assael, N. Malamataris, L. Karagiannidis, Measurements of the thermal conductivity of refrigerants in the vapor phase, Int J Thermophys, 18(2),(1997)341-352.
  25. X. Gao, T. Yamada, Y. Nagasaka, A. Nagashima, The thermal conductivity of CFC alternatives HFC-125 and HCFC-141b in the liquid phase, Int J Thermophys, 17(2),(1996)279-292.
  26. MJ. Assael, L. Karagiannidis, Measurements of the Thermal Conductivity of Liquid R32, R124, R125, and R141b, Int J Thermophys, 16(4),(1995)851-865.
  27. RA. Perkins, AD. Laesecke, ML. Ramires, AN. Gurova, Experimental thermal conductivity values for the IUPAC round-robin sample of 1, 1, 1, 2-tetrafluoroethane (R134a), (2000).
  28. AB. Donaldson, On the Estimation of Thermal Conductivity of Organic Vapors. Data for Some Freons, Ind Eng Chem Fundam, 14(4),(1975)325-328.
  29. FG. Keyes, Thermal conductivity of gases, Trans Am Soc Mech Eng, 76,(1954).
  30. T. Makita, Y. Tanaka, Y. Morimoto, M. Noguchi, H. Kubota, Thermal conductivity of gaseous fluorocarbon refrigerants R 12, R 13, R 22, and R 23, under pressure, Int J Thermophys, 2(3),(1981)249-268.
  31. J. Yata, T. Minamiyama, S. Tanaka, Measurement of thermal conductivity of liquid fluorocarbons, Int J Thermophys, 5(2),(1984)209-218.
  32. M. Okada, K. Watanabe, Surface tension correlations for several fluorocarbon refrigerants, Heat Transf Japanese Res, 17(1),(1988)35-52.
  33. AS. Rodgers, J. Chao, RC. Wilhoit, BJ. Zwolinski, Ideal gas thermodynamic properties of eight chloro-and fluoromethanes, J Phys Chem Ref Data. 3(1),(1974)117-140.
  34. SA. Klein, MO. McLinden, A. Laesecke, An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures, Int J Refrig, 20(3),(1997)208-217.
  35. N. Imaishi, J. Kestin, R. Paul, Thermal conductivity of carbon tetrafluoride with argon and helium, Int J Thermophys, 6(1),(1985)3-20.
  36. S. Oshen, BM. Rosenbaum, G. Thodos, Thermal conductivity of carbon tetrafluoride in the dense gaseous region, J Chem Phys, 46(8),( 1967)2939-2944.
  37. BM. Rosenbaum, G, Thodos. Thermal conductivity of mixtures in the dense gaseous state: the methane–carbon dioxide system, J Chem Phys, 51(4),(1969)1361-1368.
  38. J. Millat, M. Ross, WA. Wakeham, M. Zalaf, The thermal conductivity of neon, methane and tetrafluoromethane, Phys A Stat Mech its Appl, 148(1-2),(1988)124-152.
  39. G. Zaporozhan, V. Geller, Experimental investigation of heat-conductivity coefficient of F-13, F-14 freons and their mixture at low-temperatures, Zhurnal Fiz khimii, 51(5),(1977)1056-1059.
  40. J. Kestin, HE. Khalifa, ST. Ro, WA. Wakeham, The viscosity and diffusion coefficients of eighteen binary gaseous systems, Phys A Stat Mech Its Appl, 88(2),(1977)242-260.
  41. GC. Maitland, EB. Smith, Viscosities of binary gas mixtures at high temperatures, J Chem Soc Faraday Trans 1 Phys Chem Condens Phases, 70,(1974)1191-1211.
  42. DC. Rasskazov, YM. Babikov, NY. Filatov, Experimental Investigation of Some Methane Row Refrigerants, Tr Mosk Energ Inst, (1975)234:90.
  43. J. Millat, V. Vesovic, WA. Wakeham, The viscosity of nitrous oxide and tetrafluoromethane in the limit of zero density, Int J Thermophys, 12(2),(1991)265-273.
  44. GA. Olchowy, J V. Sengers, A simplified representation for the thermal conductivity of fluids in the critical region, Int J Thermophys, 10(2),(1989)417-426.
  45. V. Vesovic, WA. Wakeham, GA. Olchowy, J V. Sengers, JTR. Watson, J. Millat, The transport properties of carbon dioxide, J Phys Chem Ref data, 19(3),(1990)763-808.
  46. R. Perkins, L. Cusco, J. Howley, A. Laesecke, S. Matthes, ML V. Ramires, Thermal conductivities of alternatives to CFC-11 for foam insulation, J Chem Eng Data, 46(2),(2001)428-432.
  47. R. Yamamoto, S. Matsuo, Y. Tanaka, Thermal conductivity of halogenated ethanes, HFC-134a, HCFC-123, and HCFC-141b, Int J Thermophys, 14(1),(1993)79-90.
  48. M. Papadaki, M. Schmitt, A. Seitz, K. Stephan, B. Taxis, WA. Wakeham, Thermal conductivity of R134a and R141b within the temperature range 240–307 K at the saturation vapor pressure, Int J Thermophys, 14(2),(1993)173-181.
  49. J. Yata, M. Hori, T. Kurahashi, T. Minamiyama, Thermal conductivity of alternative fluorocarbons in liquid phase, Fluid Phase Equilib, 80,(1992)287-296.
  50. R. Dohrn, R. Treckmann, T. Heinemann, Vapor-phase thermal conductivity of 1, 1, 1, 2, 2-pentafluoropropane, 1, 1, 1, 3, 3-pentafluoropropane, 1, 1, 2, 2, 3-pentafluoropropane and carbon dioxide, Fluid Phase Equilib, 158,(1999)1021-1028.
  51. RG. Richard, IR. Shankland, A transient hot-wire method for measuring the thermal conductivity of gases and liquids, Int J Thermophys, 10(3),(1989)673-686.
  52. Y. Tanaka, M. Nakata, T. Makita, Thermal conductivity of gaseous HFC-134a, HFC-143a, HCFC-141b, and HCFC-142b, Int J Thermophys, 12(6),(1991)949-963.
  53. AN. Gurova, CA. Nieto de Castro, The thermal conductivity of halo carbon. In: Proc. 4th Asian Thermophysical Properties Conf.(Tokyo), (1995)129-132.
  54. DE. Diller, AS. Aragon, A. Laesecke, Measurements of the viscosities of saturated and compressed liquid 1, 1, 1, 2-tetrafluoroethane (R134a), 2, 2-dichloro-1, 1, 1-trifluoroethane (R123) and 1, 1-dichloro-1-fluoroemane (R141b), Fluid Phase Equilib, 88,(1993)251-262.
  55. A. Kumagai, C. Yokoyama, Revised viscosities of saturated liquid halocarbon refrigerants from 273 to 353 K, Int J Thermophys, 21(4),(2000)909-912.
  56. MJ. Assael, SK. Polimatidou, E. Vogel, Wakeham WA. Measurements of the viscosity of R11, R12, R141b, and R152a in the temperature range 270–340 K at pressures up to 20 MPa, Int J Thermophys, 15(4),(1994)575-589.
  57. V. Vesovic, WA. Wakeham, GA. Olchowy, J V. Sengers, JTR. Watson, J. Millat, The transport properties of carbon dioxide, J Phys Chem Ref data, 19(3),(1990)763-808.
  58. M. Okada, Y. Higashi, Experimental surface tensions for HFC-32, HCFC-124, HFC-125, HCFC-141b, HCFC-142b, and HFC-152a, Int J Thermophys, 16(3),(1995)791-800.