Document Type: Review Article

Authors

1 Department of Pharmacy, GRD(PG) Institute of Management & Technology, Dehradun, 248009, (Uttarakhand), India

2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, PO Box 840, Saudi Arabia

10.33945/SAMI/PCBR.2019.4.5

Abstract

Cinnamic acid analogues are naturally occurring compounds found in fruits, vegetables, and flowers. It is used as dietary phenolic compounds and play vital role in the preparation of essential intermediate compounds which are crucial for the making of various pharmaceutical components. Cinnamic acid and its analogues are studied for its various types of biological activities including antioxidant, anticancer, hepatoprotective, anticonvulsant, anxiolytic, antidepressants, insect repellents, antidiabetic and anticholesterolemic etc. Various substitutions on cinnamic acid moiety lead to different types of pharmacological activities such as m-hydroxy or p-methoxy group on cinnamic acid is significantly vital functional groups as an efficient insulin releasing compound while 3,4-Dihydroxycinnamic acid or caffeic acid showed hepatoprotective activity. Cinnamic acid analogues are showed variety of biological activities along with their milder to moderate adverse effects which are become obstacle for the clinical use of cinnamic acid analogues. So for the suitable use of cinnamic acid analogues, it is yet to investigate to decrease or terminate its adverse effects.

Graphical Abstract

Keywords

Main Subjects

References:    

 

 

 

[1] M.A. Zolfigol, R. Ayazi-Nasrabadi and S. Baghery, Synthesis and characterization of two novel biological-based nano organo solid acids with urea moiety and their catalytic applications in the synthesis of 4, 4′-(arylmethylene) bis (1 H-pyrazol-5-ol), coumarin-3-carboxylic acid and cinnamic acid derivatives under mild and green conditions. RSC Advances,  5 (2015)  71942-71954.

[2] N.C. Wheatley, K.T. Andrews, T.L. Tran, A.J. Lucke, R.C. Reid and D.P. Fairlie, Antimalarial histone deacetylase inhibitors containing cinnamate or NSAID components. Bioorganic & medicinal chemistry letters,  20 (2010)  7080-7084.

[3] F. Bisogno, L. Mascoti, C. Sanchez, F. Garibotto, F. Giannini, M. Kurina-Sanz and R. Enriz, Structure− antifungal activity relationship of cinnamic acid derivatives. Journal of agricultural and food chemistry,  55 (2007)  10635-10640.

[4] S.A. Carvalho, E.F. da Silva, M.V. de Souza, M.C. Lourenço and F.R. Vicente, Synthesis and antimycobacterial evaluation of new trans-cinnamic acid hydrazide derivatives. Bioorganic & medicinal chemistry letters,  18 (2008)  538-541.

[5] X.-f. Jiang and Y.-s. Zhen, Cinnamamide, an antitumor agent with low cytotoxicity acting on matrix metalloproteinase. Anti-cancer drugs,  11 (2000)  49-54.

[6] Y. Qian, H.-J. Zhang, H. Zhang, C. Xu, J. Zhao and H.-L. Zhu, Synthesis, molecular modeling, and biological evaluation of cinnamic acid metronidazole ester derivatives as novel anticancer agents. Bioorganic & medicinal chemistry,  18 (2010)  4991-4996.

[7] M. Bayssat and M. Grand. (1972), Google Patents.

[8] F.J. Villani, J. Lang and D. Papa, Amides of Ethylenediamines. II. Substituted Cinnamides as Local Anesthetic Agents1. Journal of the American Chemical Society,  76 (1954)  87-88.

[9] T. Takahashi and M. Miyazawa, Tyrosinase inhibitory activities of cinnamic acid analogues. Die Pharmazie-An International Journal of Pharmaceutical Sciences,  65 (2010)  913-918.

[10] A. Balsamo, P. Barili, P. Crotti, B. Macchia, F. Macchia, A. Pecchia, A. Cuttica and N. Passerini, Structure-activity relations in cinnamamides. 1. Synthesis and pharmacological evaluation of some (E)-and (Z)-N-alkyl-. alpha.,. beta.-dimethylcinnamamides. Journal of medicinal chemistry,  18 (1975)  842-846.

[11] A. Balsamo, P. Barili, P. Crotti, B. Macchia, F. Macchia, A. Cuttica and N. Passerini, Structure-activity relation in cinnamamides. 2. Synthesis and pharmacological evaluation of some (E)-and (Z)-N-alkyl-. alpha.,. beta.-dimethylcinnamamides substituted on the phenyl group. Journal of medicinal chemistry,  20 (1977)  48-53.

[12] L.-P. Guan, C.-X. Wei, X.-Q. Deng, X. Sui, H.-R. Piao and Z.-S. Quan, Synthesis and anticonvulsant activity of N-(2-hydroxyethyl) cinnamamide derivatives. European journal of medicinal chemistry,  44 (2009)  3654-3657.

[13] N.-H. Nam, Y.-J. You, Y. Kim, D.-H. Hong, H.-M. Kim and B.Z. Ahn, Syntheses of certain 3-aryl-2-propenoates and evaluation of their cytotoxicity. Bioorganic & medicinal chemistry letters,  11 (2001)  1173-1176.

[14] S. Kumar, P. Arya, C. Mukherjee, B.K. Singh, N. Singh, V.S. Parmar, A.K. Prasad and B. Ghosh, Novel aromatic ester from Piper longum and its analogues inhibit expression of cell adhesion molecules on endothelial cells. Biochemistry,  44 (2005)  15944-15952.

[15] A. Babaei and A.R. Taheri, Direct electrochemistry and electrocatalysis of myoglobin immobilized on a novel chitosan-nickel hydroxide nanoparticles-carbon nanotubes biocomposite modified glassy carbon electrode. Anal. Bioanal. Electrochem,  4 (2012)  342-356.

[16] G.-S. Lee, A. Widjaja and Y.-H. Ju, Enzymatic synthesis of cinnamic acid derivatives. Biotechnology letters,  28 (2006)  581-585.

[17] S. Mohammadi, A. Taheri and Z. Rezayati-Zad, Ultrasensitive and selective non-enzymatic glucose detection based on pt electrode modified by carbon nanotubes@ graphene oxide/nickel hydroxide-Nafion hybrid composite in alkaline media. Progress in Chemical and Biochemical Research,  1 (2018)  1-10.

[18] M. Gupta and B.P. Wakhloo, Tetrabutylammoniumbromide mediated Knoevenagel condensation in water: synthesis of cinnamic acids. Arkivoc,  1 (2007)  94-98.

[19] S.S.H. Davarani, A.R. Taheri and N. Rahmatian, Highly selective solid phase extraction and preconcentration of Azathioprine with nano-sized imprinted polymer based on multivariate optimization and its trace determination in biological and pharmaceutical samples. Materials Science and Engineering: C,  71 (2017)  572-583.

[20] B.P. Joshi, A. Sharma and A.K. Sinha, Efficient one-pot, two-step synthesis of (E)-cinnmaldehydes by dehydrogenation–oxidation of arylpropanes using DDQ under ultrasonic irradiation. Tetrahedron,  62 (2006)  2590-2593.

[21] G.V. Ambulgekar, B.M. Bhanage and S.D. Samant, Low temperature recyclable catalyst for Heck reactions using ultrasound. Tetrahedron letters,  46 (2005)  2483-2485.

[22] Z. Zhang, Z. Zha, C. Gan, C. Pan, Y. Zhou, Z. Wang and M.-M. Zhou, Catalysis and regioselectivity of the aqueous Heck reaction by Pd (0) nanoparticles under ultrasonic irradiation. The Journal of organic chemistry,  71 (2006)  4339-4342.

[23] Z. Zhang and Z. Wang, Diatomite-supported Pd nanoparticles: an efficient catalyst for Heck and Suzuki reactions. The Journal of organic chemistry,  71 (2006)  7485-7487.

[24] N. Rastogi, K.S. Goh, L. Horgen and W.W. Barrow, Synergistic activities of antituberculous drugs with cerulenin and trans-cinnamic acid against Mycobacterium tuberculosis. FEMS Immunology & Medical Microbiology,  21 (1998)  149-157.

[25] S. NOMURA, T. Horiuchi, S. ŌMURA and T. HATA, The Action Mechanism of Cerulenin: I. Effect of Cerulenin on Sterol and Fatty Acid Biosyntheses in Yeast. The Journal of Biochemistry,  71 (1972)  783-796.

[26] Z.R. Zad, S.S.H. Davarani, A. Taheri and Y. Bide, A yolk shell Fe3O4@ PA-Ni@ Pd/Chitosan nanocomposite-modified carbon ionic liquid electrode as a new sensor for the sensitive determination of fluconazole in pharmaceutical preparations and biological fluids. Journal of Molecular Liquids,  253 (2018)  233-240.

[27] R. Bairwa, M. Kakwani, N.R. Tawari, J. Lalchandani, M. Ray, M. Rajan and M.S. Degani, Novel molecular hybrids of cinnamic acids and guanylhydrazones as potential antitubercular agents. Bioorganic & medicinal chemistry letters,  20 (2010)  1623-1625.

[28] S. Huang and M.P. Czech, The GLUT4 glucose transporter. Cell metabolism,  5 (2007)  237-252.

[29] S. Adisakwattana, P. Moonsan and S. Yibchok-Anun, Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo. Journal of agricultural and food chemistry,  56 (2008)  7838-7844.

[30] N. Bogdashev, N. Tukhovskaya and A. Pogrebnyak, Physicochemical characterization of cinnamic acid derivatives. Part 1. Relationship between antioxidant activity and physicochemical properties. Pharmaceutical chemistry journal,  32 (1998)  86-88.

[31] J.H. Chen and C.-T. Ho, Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. Journal of agricultural and food chemistry,  45 (1997)  2374-2378.

[32] F. Natella, M. Nardini, M. Di Felice and C. Scaccini, Benzoic and cinnamic acid derivatives as antioxidants: Structure− activity relation. Journal of agricultural and food chemistry,  47 (1999)  1453-1459.

[33] B. Narasimhan, D. Belsare, D. Pharande, V. Mourya and A. Dhake, Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. European Journal of Medicinal Chemistry,  39 (2004)  827-834.

[34] C. Letizia, J. Cocchiara, A. Lapczynski, J. Lalko and A. Api, Fragrance material review on cinnamic acid. Food and chemical toxicology,  43 (2005)  925-943.

[35] A. Klausner, Building for success in phenylalanine. Bio/technology,  3 (1985)  301.

[36] R. Jalilian and A. Taheri, Synthesis and application of a novel core-shell-shell magnetic ion imprinted polymer as a selective adsorbent of trace amounts of silver ions. e-Polymers,  18 (2018)  123-134.

[37] Z.R. Zad, S.S.H. Davarani, A.R. Taheri and Y. Bide, Highly selective determination of amitriptyline using Nafion-AuNPs@ branched polyethyleneimine-derived carbon hollow spheres in pharmaceutical drugs and biological fluids. Biosensors and Bioelectronics,  86 (2016)  616-622.

[38] V. Pérez‐Alvarez, R. Bobadilla and P. Muriel, Structure–hepatoprotective activity relationship of 3, 4‐dihydroxycinnamic acid (caffeic acid) derivatives. Journal of Applied Toxicology: An International Journal,  21 (2001)  527-531.

[39] E. Fernández-Martínez, R.A. Bobadilla, M.S. Morales-Ríos, P. Muriel and V.M. Pérez-Álvarez, Trans-3-phenyl-2-propenoic acid (cinnamic acid) derivatives: structure-activity relationship as hepatoprotective agents. Medicinal Chemistry,  3 (2007)  475-479.

[40] S. Branch, A sensor for determination of tramadol in pharmaceutical preparations and biological fluids based on multi-walled carbon nanotubes-modified glassy carbon electrode. J. Chem. Soc. Pak,  35 (2013)  1106.

[41] T. Pagar, S. Ghotekar, K. Pagar, S. Pansambal and R. Oza, A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications. Journal of Chemical Reviews,  1 (2019)  260-270.

[42] A. Nikam, T. Pagar, S. Ghotekar, K. Pagar and S. Pansambal, A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. Journal of Chemical Reviews,  1 (2019)  154-163.

[43] S. Taghavi Fardood, A. Ramazani, M. Ayubi, F. Moradnia, S. Abdpour and R. Forootan, Microwave Assisted Solvent-free Synthesis of 1-phenyl-1, 2-dihydro-3H-naphtho [1, 2-e][1, 3] oxazin-3-one Catalyzed by FeCl3. Chemical Methodologies,  3 (2019)  583-589.

[44] A. Kargar-Dolatabadi and A. Zare, A Rapid and Highly Effectual Protocol for the Synthesis of Bis-coumarins using Triethylaminium-N-sulfonic Acid Tetrachloroaluminate under Solvent-Free Conditions. Chemical Methodologies,  3 (2019)  655-662.

[45] A.A. Dar, A.K. Dwivedi, P.K. Iyer and A. Khan, Indole derived “turn-on” fluorometric probe for dual detection of Hg2+ and Cu2+ ions at nanomolar level. Asian Journal of Green Chemistry,  2 (2018)  171-180.

[46] M.N. Khan, D.K. Parmar and H.B. Bhatt, Imidazole mediated synthesis of spirooxindoles in water using isatin as a privileged scaffold. Asian Journal of Green Chemistry,  3 (2019)  470-482.

[47] J.H. Kim, B.C. Campbell, N.E. Mahoney, K.L. Chan and R.J. Molyneux, Identification of phenolics for control of Aspergillus flavus using Saccharomyces cerevisiae in a model target-gene bioassay. Journal of agricultural and food chemistry,  52 (2004)  7814-7821.

[48] S. Tawata, M. Fukuta, T.D. Xuan and F. Deba, Total utilization of tropical plants Leucaena leucocephala and Alpinia zerumbet. Journal of Pesticide Science,  33 (2008)  40-43.

[49] P. Neogi, F.J. Lakner, S. Medicherla, J. Cheng, D. Dey, M. Gowri, B. Nag, S.D. Sharma, L.B. Pickford and C. Gross, Synthesis and structure–activity relationship studies of cinnamic acid-based novel thiazolidinedione antihyperglycemic agents. Bioorganic & medicinal chemistry,  11 (2003)  4059-4067.

[50] S. Adisakwattana, S. Roengsamran, W.H. Hsu and S. Yibchok-anun, Mechanisms of antihyperglycemic effect of p-methoxycinnamic acid in normal and streptozotocin-induced diabetic rats. Life sciences,  78 (2005)  406-412.

[51] K. Kamari and A. Taheri, Preparation and evaluation of magnetic core–shell mesoporous molecularly imprinted polymers for selective adsorption of amitriptyline in biological samples. Journal of the Taiwan Institute of Chemical Engineers,  86 (2018)  230-239.

[52] H. Ginsburg, Transport pathways in the malaria-infected erythrocyte: characterization and their use as potential targets for chemotherapy. Memórias do Instituto Oswaldo Cruz,  89 (1994)  99-109.

[53] E. Haslam, Natural polyphenols (vegetable tannins) as drugs: possible modes of action. Journal of natural products,  59 (1996)  205-215.

[54] B.H. Yoon, J.W. Jung, J.-J. Lee, Y.-W. Cho, C.-G. Jang, C. Jin, T.H. Oh and J.H. Ryu, Anxiolytic-like effects of sinapic acid in mice. Life sciences,  81 (2007)  234-240.

[55] L. Hedvati, A. Nudelman, E. Falb, B. Kraiz, R. Zhuk and M. Sprecher, Cinnamic acid derived oxazolinium ions as novel cytotoxic agents. European journal of medicinal chemistry,  37 (2002)  607-616.

[56] Y. Takeda, N. Tanigawa, F. Sunghwa, M. Ninomiya, M. Hagiwara, K. Matsushita and M. Koketsu, Morroniside cinnamic acid conjugate as an anti-inflammatory agent. Bioorganic & medicinal chemistry letters,  20 (2010)  4855-4857.

[57] W. Sun, Q. He and Y. Luo, Synthesis and properties of cinnamic acid series organic UV ray absorbents–interleaved layered double hydroxides. Materials Letters,  61 (2007)  1881-1884.

[58] J.W. Sander, The epidemiology of epilepsy revisited. Current opinion in neurology,  16 (2003)  165-170.

[59] E. Perucca, J. French and M. Bialer, Development of new antiepileptic drugs: challenges, incentives, and recent advances. The lancet neurology,  6 (2007)  793-804.

[60] M. Abram, M. Zagaja, S. Mogilski, M. Andres-Mach, G. Latacz, S. Baś, J.J. Łuszczki, K. Kieć-Kononowicz and K. Kamiński, Multifunctional hybrid compounds derived from 2-(2, 5-dioxopyrrolidin-1-yl)-3-methoxypropanamides with anticonvulsant and antinociceptive properties. Journal of medicinal chemistry,  60 (2017)  8565-8579.

[61] T. Liu, S. Zhong, X. Liao, J. Chen, T. He, S. Lai and Y. Jia, A meta-analysis of oxidative stress markers in depression. PloS one,  10 (2015)  e0138904.

[62] A. Gunia, A. M Waszkielewicz, M. Cegla and H. Marona, Preliminary evaluation of anticonvulsant activity of some aminoalkanol and amino acid cinnamic acid derivatives. Letters in Drug Design & Discovery,  9 (2012)  37-43.

[63] V. Nesterenko, K.S. Putt and P.J. Hergenrother, Identification from a combinatorial library of a small molecule that selectively induces apoptosis in cancer cells. Journal of the American Chemical Society,  125 (2003)  14672-14673.

[64] L. Desmedt, C. Niemegeers and P. Janssen, Anticonvulsive properties of cinnarizine and flunarizine in rats and mice. Arzneimittel-forschung,  25 (1975)  1408-1413.

[65] J. Overweg and C. Binnie, Clinical treatment of epilepsy with calcium entry blockers. Functional neurology,  1 (1986)  539-541.

[66] A. Battaglia, A.R. Ferrari and R. Guerrini, Double-blind placebo-controlled trial of flunarizine as add-on therapy in refractory childhood epilepsy. Brain and Development,  13 (1991)  217-222.

[67] G. Cavazzuti, V. Galli and A. Benatti, The use of flunarizine in pediatric epilepsy. Functional neurology,  1 (1986)  551-554.

[68] G. Echevarría, Flunarizine as adjunctive treatment in epilepsy with partial seizures. Revista de neurologia,  46 (2008)  381-382.

[69] H.A. Teive, A.R. Troiano, F.M. Germiniani and L.C. Werneck, Flunarizine and cinnarizine-induced parkinsonism: a historical and clinical analysis. Parkinsonism & related disorders,  10 (2004)  243-245.

[70] E. Pękala and H. Marona, Estimating the lipophilicity of a number of 2‐amino‐1‐cyclohexanol derivatives exhibiting anticonvulsant activity. Biomedical Chromatography,  23 (2009)  543-550.

[71] M.E. Barton, B.D. Klein, H.H. Wolf and H.S. White, Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy research,  47 (2001)  217-227.

[72] W. Brown, D. Schiffman, E. Swinyard and L. Goodman, Comparative assay of antiepileptic drugs by" psychomotor" seizure test and minimal electroshock threshold test. Journal of Pharmacology and Experimental Therapeutics,  107 (1953)  273-283.

[73] A. Gunia-Krzyżak, D. Żelaszczyk, A. Rapacz, E. Żesławska, A.M. Waszkielewicz, K. Pańczyk, K. Słoczyńska, E. Pękala, W. Nitek and B. Filipek, Structure-anticonvulsant activity studies in the group of (E)-N-cinnamoyl aminoalkanols derivatives monosubstituted in phenyl ring with 4-Cl, 4-CH3 or 2-CH3. Bioorganic & medicinal chemistry,  25 (2017)  471-482.

[74] A. M Waszkielewicz, E. Szneler, M. Cegla and H. Marona, Synthesis and Evaluation of Anticonvulsant Activity of Some N-[(4-Chlor-2-methylphenoxy) ethyl]-and N-[(4-Chlor-2-methylphenoxy) acetyl] aminoalkanols. Letters in Drug Design & Discovery,  10 (2013)  35-43.

[75] R.M. Kaminski, M.R. Livingood and M.A. Rogawski, Allopregnanolone analogs that positively modulate GABAA receptors protect against partial seizures induced by 6‐Hz electrical stimulation in mice. Epilepsia,  45 (2004)  864-867.

[76] D. Kaufmann, M. Bialer, J.A. Shimshoni, M. Devor and B. Yagen, Synthesis and evaluation of antiallodynic and anticonvulsant activity of novel amide and urea derivatives of valproic acid analogues. Journal of medicinal chemistry,  52 (2009)  7236-7248.

[77] H. Marona and L. Antkiewicz-Michaluk, Synthesis and anticonvulsant activity of 1, 2-aminoalkanol derivatives. Acta poloniae pharmaceutica,  55 (1998)  487-498.

[78] H. Marona and E. Szneler, Preliminary evaluation of anticonvulsant activity of some 4-(benzyloxy)-benzamides. Acta poloniae pharmaceutica,  60 (2003)  477-480.

[79] H. Marona, Synthesis and anticonvulsant effects of some aminoalkanolic derivatives of xanthone. Die Pharmazie,  53 (1998)  672-676.

[80] R. Paruszewski, M. Strupinska, G. Rostafinska-Suchar and J.P. Stables, Anticonvulsant activity of benzylamides of some amino acids and heterocyclic acids. Protein and peptide letters,  10 (2003)  475-482.

[81] R. Paruszewski, M. Strupinska, J.P. Stables, M. ŚWIADER, S. CZUCZWAR, Z. KLEINROK and W. TURSKI, Amino acid derivatives with anticonvulsant activity. Chemical and pharmaceutical bulletin,  49 (2001)  629-631.

[82] J.P. Stables and H.J. Kupferberg, The NIH anticonvulsant drug development (ADD) program: preclinical anticonvulsant. Molecular and cellular targets for antiepileptic drugs,  12 (1997)  191.

[83] W.A. Turski, Pilocarpine-induced seizures in rodents--17 years on. Polish journal of pharmacology,  52 (2000)  63-65.

[84] A.M. WASZKIELEWICZ, M. CEGŁA and H. MARONA, Synthesis and preliminary evaluation of anticonvulsant activity of some [4-(benzyloxy) benzoyl]-and [4-(benzyloxy) benzyl] aminoalkanol derivatives. Acta Pol. Pharm. Drug Res,  64 (2007)  147-157.

[85] I. Winkler, S. Blotnik, J. Shimshoni, B. Yagen, M. Devor and M. Bialer, Efficacy of antiepileptic isomers of valproic acid and valpromide in a rat model of neuropathic pain. British journal of pharmacology,  146 (2005)  198-208.

[86] M. Liu, W.-G. Wang, H.-D. Sun and J.-X. Pu, Diterpenoids from Isodon species: an update. Natural product reports,  34 (2017)  1090-1140.

[87] W. Kulak and W. Sobaniec, Molecular mechanisms of brain plasticity: neurophysiologic and neuroimaging studies in the developing patients. Rocz Akad Med Bialymst,  49 (2004)  227-236.

[88] R. Krall, J. Penry, B. White, H. Kupferberg and E. Swinyard, Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia,  19 (1978)  409-428.

[89] R.J. Porter, J.J. Cereghino, G.D. Gladding, B. Hessie, H.J. Kupferberg, B. Scoville and B.G. White, Antiepileptic drug development program. Cleve Clin Q,  51 (1984)  293-305.

[90] P. Sharma, Cinnamic acid derivatives: A new chapter of various pharmacological activities. J. Chem. Pharm. Res,  3 (2011)  403-423.

 

How to cite this manuscript:

 M. Asif and I. Mohd,Synthetic methods and pharmacological potential of some cinnamic acid analogues particularly against convulsions. Progress in Chemical and Biochemical Research,  (2019),  192-210.

 .DOI: 10.33945/SAMI/PCBR.2019.4.5