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 Natural gas holds significant importance as a prospective 
energy source for meeting growing energy demands in the 
future. Gas hydrates offer a solution for the transportation and 
storage of natural gas. Within the sphere of gas hydrate 
formation, both the kinetics and thermodynamics play crucial 
roles and directly impact the economic feasibility of the 
process. In our current study, we focus on examining one 
specific kinetic parameter related to hydrate formation: the 
methane hydrate volume fraction (HVF) produced within a 
stirred batch reactor operating at a speed of 10 rpm. Our 
experiments were done out in a double-walled reactor with a 
capacity of 169 cm3, maintaining a temperature of 275.15 K and 
a pressure of 7.5 MPa, utilizing a constant volume-constant 
temperature methodology. The experimental findings indicated 
that the utilization of SDS, noticeably, increases the amount of 
water to hydrate conversion, and the amount of combined 
volume of unreacted water and formed hydrate during hydrate 
growth. The addition of 350 ppm and 700 ppm SDS resulted in 
an increase in HVF by 491.2% and 495.7%, respectively, after 1 
hour of hydrate growth. 
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GRAPHICAL ABSTRACT 

 

              

Introduction  

In recent decades, there has been a substantial 

increase in the need for natural gas, primarily 

driven by its recognized environmental benefits, 

energy efficiency, and versatility as a fuel source. 

To accommodate this escalating demand, there 

has been a parallel expansion in the development 

of a resilient transportation infrastructure, 

facilitating the movement of natural gas across 

vast geographical expanses. There are some 

methods of transporting natural gas like 

pipelines, compressed natural gas (CNG), liquified 

natural gas (LNG), and the conversion of gas to 

liquids (GTL). Nonetheless, the constraints and 

issues linked to these conventional approaches 

have encouraged the exploration of substitute 

technologies [1-11]. Natural gas hydrates (NGH), 

which are firm crystalline substances comprising 

water and gas molecules, have attracted interest 

due to their capacity to potentially transform the 

natural gas transportation landscape [12-15]. 

Natural gas hydrates provide an effective method 

for the long-distance transportation of gas. Their 

notable energy density establishes them as a 

favorable choice for the storage and conveyance 

of gas. Gas hydrates, sometimes referred to as 

clathrate hydrates, are structured like ice crystals, 

arising from the entrapment of gas molecules 

within water molecule cages. This phenomenon 

materializes at low temperatures and high 

pressures, facilitated by hydrogen bonding among 

water molecules. These molecular cages can 

accommodate suitably sized molecules [16-18]. 

Lately, researchers have been exploring practical 

uses of gas hydrates in diverse fields, including the 

storage and conveyance of natural gas [19,20], 

desalination of saline water [21,22], greenhouse 

gas sequestration [23,24], serving as a cold 

storage medium [25,26], and concentrating juices 

and coffee [27,28]. Nevertheless, the extended 

initiation time, sluggish growth of hydrate 

formation, and the substantial pressure 

requirements pose significant obstacles, 

hindering the widespread production of gas 

hydrates. One effective approach to surmounting 

these challenges is the application of kinetic and 

thermodynamic enhancers [29-37]. Javanmardi et 
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al. (2005) conducted a study to determine the 

overall capital investment, operational expenses, 

maintenance costs, and the complete expenses 

associated with producing natural gas hydrates. 

Their research delved into how various 

operational factors influenced the economic 

aspects of transporting natural gas hydrate from 

Asaluyeh port in southern Iran to diverse gas 

markets [12]. Zhang et al. studied the impact of 

sodium dodecyl sulfate on methane hydrate 

formation within a nonstirred batch reactor. Their 

findings revealed that the inclusion of SDS 

effectively decreases the induction time. 

However, no consistent pattern emerged between 

induction times and varying SDS concentrations 

[38]. Liu et al. conducted a comparative analysis 

to assess the kinetic promotion effects of sodium 

dodecyl sulfate and L-methionine (L-Met) on CO2 

hydrate formation. The results from their 

experiments demonstrated that L-Met 

significantly enhances the formation of CO2 

hydrates, with a gas uptake in CO2 hydrate 

formation being five times higher compared to 

SDS at equivalent concentrations [39]. In a study 

conducted by Sun et al., a comparison was made 

between the effectiveness of anionic sodium 

dodecyl sulfate (SDS) and dodecyl polysaccharide 

glycoside (DPG) in promoting CH4 hydrate 

formation. The results indicated that SDS 

outperformed DPG in terms of both the hydrate 

formation rate and storage capacity [40]. In 

another investigation by Ugur Karaaslan et al., the 

promotion efficiency of different surfactants on 

natural gas hydrate formation was examined. The 

findings revealed that the anionic surfactant 

linear alkyl benzene sulfonic acid exhibited 

superior promotion efficiency compared to the 

quaternary ammonium salt and nonionic 

nonylphenol ethoxalate [41]. In 202, Mohammadi 

et al. conducted a study to explore the impact of 

SDS and tetra n-butylammonium fluoride on the 

kinetic parameters of methane hydrate formation. 

Their findings indicated that when SDS and tetra 

n-butylammonium fluoride were used 

simultaneously, it had an adverse effect on the 

kinetics of hydrate formation, as opposed to the 

results observed with TBAF and SDS solutions 

[25]. Researchers also employed nano-fluids 

characterized by high thermal conductivity to 

enhance the process of gas hydrate formation 

[29,42-46]. In a study conducted by Arjang et al., 

silver nanoparticles were utilized to enhance 

methane hydrate formation at pressures of 4.7 

and 5.7 MPa. The results demonstrated that 

compared to pure deionized water, the presence 

of nano-silver led to a reduction in the induction 

time by 85% and 73.9%, respectively, at the 

aforementioned pressures. In addition, the gas 

consumption was improved by 33.7% and 7.4% 

under the same conditions [44]. 

The hydrate volume fraction (HVF) is a kinetic 

parameter that represents the volume fraction of 

formed hydrate in an aqueous solution. This 

parameter has garnered limited attention from 

researchers. The aim of this study is to examine 

the impact of different concentrations (350 and 

700 ppm) of SDS on the hydrate volume fraction 

during the process of methane hydrate formation. 

Experimental 

Materials 

In the hydrate formation experiments, we 

employed double-distilled water as the primary 

solvent. The methane gas utilized in these tests 

was sourced with a 99.95% purity level and was 

procured from Kavian Gas Company. We acquired 

SDS, with a purity of 98 wt%, from Sigma-Aldrich 

Merck Company. The chemical structure of SDS is 

depicted in Fig 1.  

 

 

Fig 1.SDS chemical structure 
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The methane gas was stored in a 50-liter 

container, initially pressurized at 16.5 MPa. 

2.2. Apparatus and Procedure 

To facilitate our experiments, we employed a 

jacketed stainless-steel reactor constructed from 

SS-316, boasting a 169 cm³ internal capacity and 

capable of withstanding an operational pressure 

of 200 bar. Within this reactor's inner chamber, 

four valves were installed; each rated at a 

pressure tolerance of 6000 psi. Two of these 

valves were ball valves, serving the purpose of 

injecting the solution and discharging the water-

gas mixture post-experiment. 

The remaining two valves were needle valves, one 

facilitating gas injection, and the other serving as 

a connection point to a gas chromatograph device 

for gas sampling. We integrated two ports into the 

reactor's outer wall. These ports allowed for the 

entry and exit of a cooling fluid, thus affording 

precise temperature control within the reactor. 

Our choice for the coolant was a 30% weight 

solution of ethylene glycol. To minimize energy 

loss, we took measures to insulate the reactor, 

connections, and fluid transfer pipes effectively. 

To monitor the internal temperature of the 

reactor, we utilized a Pt-100 platinum 

temperature sensor with an accuracy level of ±0.1 

K. For reservoir pressure measurements, we 

employed a BD type pressure sensor with an 

accuracy of approximately 0.1 MPa. To ensure 

proper mixing within the primary hydrate 

formation chamber, an autoclaving stirrer was 

implemented, while a vacuum pump was utilized 

to create a vacuum inside the cell. A photo of the 

hydrate formation apparatus employed in this 

research is depicted in Fig 2.  

Results and Discussion 

At the commencement of each kinetic hydrate 

formation experiment, the cell is subjected to a 

cleansing procedure involving tap water followed 

by distilled water. Subsequently, the interior of 

the reactor is evacuated of air by means of a 

vacuum pump, and 25 cm³ of the solution is 

introduced into the cell. The reactor's 

temperature is precisely set at 275.15 Kelvin via 

a temperature bath. 

 

Fig 2.Visual representation of the experimental apparatus 
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Table 1.The Langmuir constant parameters, critical properties, and acentric factor for methane 

Gas ASmall 

(K/MPa) 

BSmall (K) Alarge (K/MPa) Blarge (K) Pc (MPa) Tc (K) ω 

CH4 7.228×10-4 3187 2.335×10-2 2653 4.599 190.56 0.0114 

 The hydrate-forming gas, in this case, methane, is 

introduced into the cell until the desired pressure 

is attained. Following this, the electromotor is 

activated and adjusted to a speed of 10 rpm. 

Over a certain duration, hydrate formation 

initiates, leading to a decrease in system pressure 

until it reaches a state of stability where 

fluctuations within the reactor become minimal 

(0.05 bar/hr). The quantification of gas uptake is 

accomplished through the utilization of the Peng-

Robinson equation of state [47]. Throughout the 

hydrate formation process, temperature and 

system pressure readings are gathered on a 

computer. The physical interaction between 

water and gas, in the context of hydrate formation 

can be described as follows: 

4 2 4 2CH MH O CH MH O  
                     (1) 

Where, M represents the hydration number [48].  

L S

46
M

6 2


                                                              (2) 

Within this formula, the variables θS and θL denote 

the fractional occupancy of small (S) and large (L) 

cages, respectively. The computation of these 

parameters is carried out in accordance with the 

principles of Langmuir adsorption theory, as 

detailed below [48]: 

4

4

i CH

i

i CH

C f

1 C f
 


                                                            (3) 

The Langmuir constants for both large and small 

methane hydrate cavities are presented in Table 

1.   

 

The PR EoS is written as follows [47]: 

2 2

RT a
P

v b v 2bv b
 

                                          (4) 

Within Equation (4), the variables "a" and "b" 

represent the energy and volume characteristics, 

respectively. The particulars of the PR EoS 

parameters are outlined below: 

2

c

c

(RT )
a 0.45724 (T)

P
 

                                        (5) 

c

c

RT
b 0.0778

P


                                                          (6) 

Within Equations (5) and (6), "v" represents the 

molar volume. The expression for the PR EOS 

parameter is articulated as follows: 

0.5 2

r
(T) (1 m(1 T ))   

                                          (7) 

2m 0.37464 1.54226 0.26992                   (8) 

Due to variations in molar volumes between the 

solution and gas hydrate, the gas volume within 

the cell diminishes as gas hydrate forms and 

expands. Consequently, we can calculate the 

instantaneous gas volume within the cell, labeled 

as Vt, using the subsequent equation [48]: 

t0 HtRWScellt VVVVV 
                                 (9) 

Where, Vcell and Vs0 denote the cell volume (169 

cm3) and the initial volume of the feed solution 

(25 cm3), respectively. In addition, VRWt and VHt 

represent the volume of reacted water and the 

volume of produced hydrate, respectively. The 

subscript "t" in the equation signifies the time-

dependent nature of these parameters. 

The calculation for the volume of the converted 

water is determined using the subsequent 

equation [48]: 
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4

L

RWt CH w
V M n  

                                            (10) 

The molar volume of aqueous solution, denoted as 
L

w , is computed using Equation (11) [48]: 

 

327

4

2

10}]32)15.273(8.1)[1050654.5(

]32)15.273(8.1)[1033391.1(

)100001.1(1{015.18













T

T

L

w

(11) 

Where, T (temperature) and 
L

w  are represented 

in K (Kelvin) and m3/kmol (cubic meters per 

kilomole), respectively. For structure sI empty 

hydrate lattice, 
L

w , tH
V

, and conversion can be 

obtained from the following equations [48]: 

  

PP

N
TTI AMT

w
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10448.510006.8
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(12) 

t 4

MT

H CH w
V M n  

                                            (13) 

4

0

CH
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                                               (14) 

The hydrate volume fraction, HVF, is evaluated by 

the following equation [49]: 

t

t t

H

H S

V
HVF

V V



                                                   (15) 

Table 2 presents the calculated values for water to 

hydrate conversion in SDS (350 ppm and 700 

ppm) solutions. After 1 hour of hydrate growth, 

the water to hydrate conversion amount were 

calculated as 12.02%, 82.75%, and 83.73% in 

pure water, SDS (350 ppm) solution, and SDS (700 

ppm) solution, respectively. It is evident that the 

SDS utilization at concentrations of both 350 ppm 

and 700 ppm significantly enhances the 

conversion of water to hydrate. According to 

research findings, SDS stands out as one of the 

most effective gas hydrate formation promoters 

[38-39,50-51]. SDS, as an anionic surfactant, 

reduces the surface tension of water molecules, 

leading to an increased gas uptake both in terms 

of quantity and rate. Fig.s 3 and 4 illustrate the 

SDS influence on the volume of the remaining 

solution and the formed of hydrate during 

methane hydrate growth. As can be seen in these 

figures as the reaction of hydrate formation 

proceeds, the volume of unreacted water 

decreases, and the volume of hydrate increases. 

As can be found from Figs. 3 and 4, the disparity in 

molar volume between water and the formed 

hydrate results in the combined volume of 

unreacted water and formed hydrate exceeding 

the initial volume of the injected solution (25 cc). 

Following 1 hour of hydrate growth in a pure 

water solution, the volume of unreacted water 

and formed hydrate were recorded as 22.03 mL 

and 3.734 mL, respectively.

 

Table 2.The effect of SDS on the water to hydrate conversion during hydrate growth at P0 = 7.5 MPa and T = 

275.15 K 

System 
Conversion at 

t=5 min 

Conversion at 

t=10 min 

Conversion at 

t=20 min 

Conversion at 

t=60 min 

Conversion at 

t=200 min 

Pure water 0.4 1.23 1.95 12.02 57.79 

Water + SDS (350 

ppm) 
28.31 72.81 79.99 82.75 82.78 

Water + SDS (700 

ppm) 
31.74 77.75 81.66 83.73 85.57 
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Fig 3.The volume of remained solution versus time in methane hydrate formation process at P0 = 7.5 MPa and T 

= 275.15 K 

 

Fig 4.The volume of formed hydrate vs. time in methane hydrate formation process at P0 = 7.5 MPa and T = 

275.15 K 

Table 2.The effect of SDS on the hydrate volume fraction (HVF) during hydrate growth at 7.5 MPa and 275.15 K 

System 
HVF at t=5 

min 

HVF at t=10 

min 

HVF at t=20 

min 

HVF at t=60 

min 

HVF at t=200 

min 

Pure water 0.01 0.02 0.02 0.15 0.63 

Water + SDS (350 

ppm) 

0.33 0.77 0.83 0.86 0.86 

Water + SDS (700 

ppm) 

0.37 0.82 0.85 0.86 0.88 
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In pure water, the combined volume of unreacted 

water and formed hydrate reached 25.77 cc.  

Conversely, in the presence of SDS at 

concentrations of 350 ppm and 700 ppm, the 

respective combined volumes were measured as 

30.33 cc and 30.38 cc. It is evident that the SDS 

utilization significantly increases the combined 

volume of unreacted water and formed hydrate 

when compared to the initially injected solution.  

Table 3 presents the impact of SDS with 

concentrations of 350 ppm and 700 ppm on the 

hydrate volume fraction (HVF) during hydrate 

growth. These findings are also visualized in Fig 5.  

As depicted in Fig 5 and Table 3, the utilization of 

both SDS concentrations leads to a significant 

increase in HVF compared to pure water. 

Fig 6 displays the calculated HVF values at 

different times during methane hydrate growth 

(t= 5, 10, 20, 60, and 200 min) under an initial 

pressure of 7.5 MPa and a temperature of 275.15 

K. As evident from the figure, the use of 350 and 

700 ppm SDS significantly enhances HVF within 

the first hour of hydrate growth.  After 20 minutes 

of hydrate growth, HVF values were calculated as 

0.0238 in pure water, 0.8347 in the SDS (350 

ppm) solution, and 0.8487 in the SDS (700 ppm) 

solution. This indicates a noticeable enhancement 

in HVF when SDS is present. Furthermore, the SDS 

utilization with concentrations of 350 ppm and 

700 ppm resulted in an increase in HVF by 491.2% 

and 495.7%, respectively, after 1 hour of hydrate 

growth, compared to pure water. 

 
Fig 5.The amount of hydrate volume fraction vs. time in methane hydrate formation process at P0 = 7.5 MPa and 

T = 275.15 K 

 
Fig 6.The effect of SDS on the quantities of hydrate volume fraction at various times of the methane hydrate 

growth at P0 = 7.5 MPa and T = 275.15 K 
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The SDS utilization reduces the surface tension of 

water molecules, resulting in an accelerated 

hydrate formation process. This increase in 

hydrate formation process leads to a greater 

quantity of formed hydrate, ultimately enhancing 

both water to hydrate conversion and HVF. 

Conclusion 

The amount of water to hydrate conversion and 

hydrate volume fraction were calculated in 

aqueous solutions of SDS (350 ppm and 700 ppm). 

The experimental findings indicated that when 

compared to using only pure water, the inclusion 

of 350 and 700 ppm SDS led to a significant boost 

in HVF, with increments of 491.2% and 495.7%, 

respectively. Utilization of SDS, noticeably, 

increases the amount of water to hydrate 

conversion, and the amount of combined volume 

of unreacted water and formed hydrate during 

hydrate growth. 
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