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 A facile one-pot synthesis method was developed to produce a 
new hybrid heterogeneous catalyst for catalytic oxidation 
removal of sulfur-containing compounds from petroleum 
samples. The presented catalyst is a Cd substituted heteropoly 
phosphomolybdic acid (HPMo) based on ionic liquid, which is 
stabilized on mesoporous silica. The physicochemical 
investigation of the catalyst was studied using FTIR, SEM, BET, 
XRD, and TEM. The results of XRD and FTIR proved that 
manganese was included in the catalyst structure, and the 
catalyst kept its Keggin type structure. The percentage of sulfur 
compounds removed after performing the catalyst activity in 
different conditions including temperature, catalyst amount, 
reaction time, and oxidant ratio was measured by GC-FID. Using 
the presented catalyst, it is possible to perform green 
desulfurization in a very short time with low cost and high 
removal efficiency. The performance of the synthesized catalyst 
in optimal conditions on 4 types of real fuels was evaluated. 
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1. INTRODUCTION  

The ever-increasing growth of industries and the 
uncontrolled entry of chemicals into the 
environment, especially sulfur-containing 
chemicals, have caused serious environmental 
problems and adverse effects on human health 
[1,2]. Today, fossil fuels, which make up 82% of 
energy sources, are considered as the most 
important source of energy in the world [3]. 
Despite their useful applications in industrial, 
pharmaceutical, and medical fields, sulfur 
compounds in fossil fuels such as oil, gasoline, 
and diesel are considered as undesirable and 
polluting substances [4, 5]. In addition to soil and 
water, these pollutants are released in the 
surrounding air in the form of SOX and NOX gases 
[5]. To reduce the emission of suspended 
particles as well as sulfur oxides, international 
bodies imposed environmental restrictions and 
enacted laws. Hydro desulfurization (HDS) is the 
most common desulfurization method in 
refineries. In this process, some sulfur 
compounds such as thiophene, benzothiophene, 
and dibenzothiophene resist desulfurization due 
to alkylation [6]. Therefore, more temperature, 
pressure, time, and amount of catalyst will be 
required to reduce them. Accordingly, scientists 
have always sought to find methods with milder 
operating conditions and lower costs, such as 
oxidative, biological, absorption, and extraction 
desulfurization. Oxidative desulfurization 
process was first used in 1996 by Petrostar for 

diesel desulfurization [6-9]. The catalytic-
oxidative desulfurization process is one of the 
effective technologies with high efficiency to 
remove or reduce sulfur-containing compounds 
at low temperatures (less than 50 °C) and 
atmospheric pressure, which involves a chemical 
reaction between an oxidizing agent and sulfur-
containing compounds [10-13]. In this process, 
compounds that have resisted the hydrogen 
desulfurization method are easily removed. 
Using this method, sulfur-containing organic 
compounds are converted into sulfones and 
sulfoxides by oxidizing agents, which can be 
easily separated from the non-polar phase of oil 
by processes such as extraction, absorption, and 
distillation. Oxidizing agent, type, amount of 
catalyst used, time, and temperature of oxidation 
are effective factors in oxidative desulfurization 
[14]. Organometallic frameworks can be used as 
effective heterogeneous catalysts in the oxidative 
desulfurization process due to their high surface 
area, functional groups, and design capability 
[15, 16]. Nanoporous materials are structures 
containing pores in the nano-size range, which 
recently provided conditions for the emergence 
of a new class of mesoporous structure called 
MCM41 [17-19]. This group of mesoporous 
compounds is easily produced and the materials 
used in their production are non-toxic, 
recyclable, and resistant to degradation caused 
by acidic compounds. In this research, 
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mesoporous zeolites are modified by 
organosilanes. They are a group of silicone 
compounds including alcohol and silica which 
are able to form bonds between organic 
compounds and minerals [20-23]. In this study, 
the structure and performance of the new 
heterogeneous nanocatalyst BMIM-Ti-HPMo 
MCM41, which was synthesized by the sol-gel 
method, is investigated.  

2. EXPERIMENTAL 

2.1. Materials and method  

1-Butyl-3-methylimidazolium chloride (BMIM 
Cl), tetraethyl orthosilicate (SiC8H20O4), and 
sodium molybdate dihydrate (Na2MoO4.2H2O) 
were obtained from Merck Company. DBT was 
obtained from Sigma-Aldrich Company. All the 
other chemicals used in this study were prepared 
with the analytical purity of Amertat-shimi 
Company (Tehran, Iran).  In this research, a 
Binder Gmbh- ED53 model electric oven was 
used to dry the samples. An electric furnace was 
purchased from Atbin Company for calcination, 
and YX2000A ultrasonic device was used to 
homogenize the samples. Gas chromatography-
flame ionization detector (GC- FID) was used to 
measure the amount of analyte in the sample 
[24-26]. Prehydrotreated diesel fuel (density 
0.7957 g mL-1 at 25 °C and total sulfur content 
481.80 mg/L) were sampled from Arak 
Petrochemical Company Co. Ltd. (Arak, Iran).  

Catalytic-Oxidative desulfurization process of 
model fuel 
In this research, the model fuel was obtained by 
dissolving the appropriate amount of 
dibenzothiophene in 50 ml of normal heptane 
and preparing a solution with a final 
concentration of 500 ppm. In each run, a certain 
amount of fuel was removed from the model. 
Then 50 mg of nanocatalyst and 3 ml of hydrogen 
peroxide were added to the reactor. The solution 
inside the reactor was stirred at a suitable 
temperature for a certain period of time. After 
the completion of the reaction, a certain volume 
of the oily phase was removed and sulfur-
containing compounds in the fuel were 
determined using gas chromatography [26-30]. 

The removal percentage of sulfur-containing 
compounds is obtained from Equation (1): 

  xi=(n0-ni)/n0×100                                           (1) 

Where, xi is the removal efficiency, n0 is DBT 
concentration before the process, and ni is the 
analyte concentration in the fuel after the 
process. 

2.2.1. Synthesis the APTS/MCM41 nanocatalyst  

About 1 g of calcined MCM41 and 5 mmol of 
aminopropyltrimethoxysilane (APTMS) were 
mixed in 30 g of anhydrous toluene and the 
mixture was refluxed for 12 h at 110 °C[31]. The 
mixture was filtered and refluxed again with 15 
ml of toluene for 24 h at 110 °C, and then the 
obtained product (APTS/MCM41) was dried at 
110 °C for 24 h [32,33].  

2.2.2. synthesis of BMIM-Ti-HPMo MCM41 
nanocatalyst 

APTS/MCM41 was dispersed in 50 ml, and then 
9.1 mmol of disodium hydrogen phosphate 
(Na2HPO4), 100 mmol of dihydrate sodium 
molybdate (Na2MoO4-2H2O), and 12 mmol of 
Titanium nitrate (Ti(NO3)2) were added to it 
under vigorous stirring. Sodium hydroxide and 
hydrochloric acid were used to adjust pH at 4.8. 
Thereafter, 20 mmol of BMIM was slowly added 
to the solution at 80-85 °C. The sediment was 
filtered and washed twice with a water-ethanol 
(1:1). Finally, recrystallization was done using 
acetonitrile. The nanocatalyst prepared in this 
step was called BMIM-Ti-HPMo-MCM41. 

3. RESULT AND DISCUSSION 

3.1. Characterizations of BMIM-Ti-HPMo- MCM41 
nanocatalyst  

Fig 1a displays FTIR of synthesized BMIM- Ti-
HPMo MCM41 nanocatalyst. The peaks in the 
region of 800-1100 cm-1 are assigned to the 
bending vibrations of regular and dense Si‒O‒Si 
network bonds. The peak in the region of 1048 
cm-1 is assigned to the stretching vibrations of 
Si‒OR bond. This indicates the formation of 
Si‒O‒Si bonds and confirms the formation of 
silicate structure [34, 35]. Due to the APTES 
addition in the second step, the absorption 
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spectra of 2851 and 2922 cm-1 can be assigned to 
the stretching vibrations of aliphatic carbons, 
and the peak of 1473 cm-1 is assigned to the 
bending vibrations of aliphatic carbons that 
indicates the APTES presence on the surface. The 
peak at 1644 cm-1 is assigned to the bending 
vibrations of NH2.  
Fig 1b shows the X- ray diffraction pattern of the 
synthesized BMIM-Ti-HPMo-MCM41. The weak 
intensity of the peak at the angle of 2θ = 1.181° 
shows the lack of pore order in the MCM41 
structure in the synthesized nanocatalyst. The 
peaks corresponding to the crystal planes of 
(100), (110), and (210) indicate the formation of 
a highly ordered hexagonal structure in the 
catalyst. The results indicate the presence of the 
pore in the MCM41 structure. In fact, the 
weakening of peaks in the sample is due to the 
filling of pores, which confirms the introduction 
of amine- containing functional groups into the 
mesopores [36, 37].  
Using the scanning electron microscope in Fig 1c 
and 1d, the morphology of MCM41 and BMIM- 
Ti-HPMo MCM41 was investigated. In the SEM 
analysis of MCM41, the mesoporous channels 
and structures of MCM41 are clearly visible and 
these mesoporous structures are also visible in 
BMIM-Ti-HPMo-MCM41 with a slight change, 
which indicated the uniform distribution and 
formation of regular layers on the surface. The 
results of SEM analysis of BMIM-Ti-HPMo 
MCM41 and MCM41 consistent with the results 
of XRD and confirm the filling of internal pores 
and the formation of layers on the MCM41 
surface in BMIM-Ti-HPMo-MCM41. In addition, a 
small number of fine agglomerations are also 
observed on the surface [38].  
Fig 1e and 1f demonstrate the TEM analysis of 
MCM41 nanocatalyst base and synthesized 
BMIM-Ti-HPMo-MCM41 nanocatalyst. The TEM 
image related to the regular mesoporous 
structure of MCM41 clearly shows the uniform 
thickness of the wall in Fig 1e with black–white 
contrast. In Fig 1f, the 2-dimensional periodic 
meso-structures of the MCM41 were preserved 
even after the introduction of Mo and Ti into the 
pores, which is consistent with the XRD results. 
No agglomerations (big particles) were observed 
in the Figures, which indicates high dispersion 
and confinement of Mo and Ti species in the 

channels of MCM41. This causes the pores to be 
filled and can be a reasonable explanation for the 
reduction in specific surface area [39].  
The isothermal graph of nitrogen adsorption- 
desorption and the Barret Joyner-Halenda (BJH) 
of the MCM41 is type IV according to the IUPAC 
classification, which confirms the mesoporous 
nature of the porous composition (Fig 2a and 
2b). The presence of a hysteresis cycle between 
the nitrogen absorption and desorption branch 
on the surface originates from the presence of 
capillary condensate in the mesoporous cavities, 
which is absorbed in the cylindrical cavities due 
to gas liquefaction. The delay during desorption 
is one of the characteristics of mesoporous 
materials (evaporation occurs at a lower relative 
pressure). As it is shown in isotherm graph, this 
hysteresis cycle can be seen in MCM41 between 
relative pressures of 0.55-0.75. The BET and BJH 
of the BMIM-Ti-HPMo-MCM41 shows the type IV 
isotherm [40]. 
The two graphs shown in Fig 2a and 2b are 
almost similar and staircase according to the 
reported reference, which is related to 
mesoporous materials. In this figure, the 
adsorption graph does not coincide with the 
desorption graph. According to the obtained 
results, the reduction of the specific surface area 
of MCM41 nanocatalyst base from 520.58 m2/g 
to 150.89 m2/g in BMIM-Ti-HPMo-MCM41 
nanocatalyst indicates the addition of APTES and 
metal oxides into the pores, and as a result the 
pores are blocked and specific surface area and 
volume are decreased in the final synthesized 
nanocatalyst [41].  
According to the size of the formed pores, the 
synthesized nanocatalyst can be classified in the 
mesoporous category. Fig 2c illustrates EDAX 
elemental analysis of BMIM-Ti-HPMo-MCM41 
nanocatalyst. The spectra obtained from this 
analysis show the presence of elements such as 
Cd, O, Si, and Mo in the nanocatalyst. The weight 
percentages obtained from the elemental 
analysis of the nanocatalyst are consistent with 
the values considered for the nanocatalyst. In 
addition, the results of mapping images of Mo, Si, 
O, and Cd elements shown in Figure 2d confirm 
that Cd and Mo elements are uniformly 
distributed and dispersed in MCM41 channels. 
This shows that the surface of MCM41, which is a 
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silicate base, is covered in a large amount and in 
a multilayered manner. Based on the results of 
BET analysis, it can be concluded that the filling 
method is multilayered. These data are in 
acceptable agreement with the result of BET and 
XRD analyses.  

3.2. Extractive-catalytic oxidative desulfurization 
(ECOD) experiments 

A GC device (GC; Agilent, 7820A) with flam 
ionization detector and capillary column (Agilent 

1909/z- 530.100m × 250μ𝑚×𝟢·𝟧) was used for 
GC analysis. The results are shown in Fig 3. The 
analysis conditions of the GC are as follows: The 
carrier gas was nitrogen the temperature of the 
injector was 245 °C. The temperature of detector 
was 310°C. The temperature of the column was 
first 50 °C. 
Then it was heated for 45 min with a 
temperature of 10 to 250°C. Fig 3 shows DBT- 
STD and DBT- sulfone standards chromatographs 
and oxidation results after 30 and 65 °C.  

 

 

 
Fig 1.FTIR (a), XRD (b) of BMIM-Ti-HPMo MCM41, SEM of MCM41  
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Fig 1 (continue) SEM of MCM41 (c) and BMIM-Ti-HPMo-MCM41 
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Fig 2.BET (a), EDAX analysis spectra (b), and mapping images (c) of BMIM-Ti-HPMo MCM41 nanocatalyst 
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Fig 3.GC- FID chromatogram, DBT- STD (a) and DBT- sulfone – STD (b) diesel model fuel at 30 °C (c) 

and 65 °C (d) 

3.2.1. Effect of temperature on the ECODS process  

Temperature was evaluated as one of the 

effective parameters on the EODS process to 

remove sulfur- containing compounds of DBT. 

The effect of reaction temperature was 

investigated on the oxidative desulfurization 

process at temperatures of 40, 50, 60, and 70 °C. 

As it is shown in Fig 4a, the removal of DBT 

increases with increasing temperature from 40 

to 60 °C. It can be concluded that increasing the 

temperature can increase the reaction rate and 

as a result the generation of active species is 

increased. 

In addition, an increase in temperature leads to 

an increase in vapor pressure and catalytic 

activity and a decrease in liquid viscosity. 

Therefore, it leads to the reduction of the mass 

transfer limitation between the aqueous and 

organic phases. However, increasing the 

temperature to 70 °C does not have effect on the 

DBT removal.  

 

 

3.2.2. Effect of oxidant ratio on the ECODS process  

In the presence of BMIM-Ti-HPMo MCM41 

nanocatalyst, the effect of the molar ratio of 

oxidant was investigated at 60 °C for 30 min 

contact time. The results are shown in Fig 4b. In 

this experiment, the ratios of 1:2, 1:1, 2:1, and 1:3 

of hydrogen peroxide to acetic acid were used in 

the ECODS process. Hydrogen peroxide 

decomposes into hydroxyl radical to remove 

DBT. As it is shown in the figure, using a 1:3 ratio 

of hydrogen peroxide to acetic acid, the removal 

efficiency of DBT from the model fuel is 

increased. 

3.2.3. Effect of catalyst dosage on the ECODS 

process  

Fig 4c indicates the effect of the amount of 

BMIM-Ti-HPMo MCM41 nanocatalyst. By 

increasing the amount of nanocatalyst from 40 to 

60 mg, the DBT removal efficiency increases. The 

cause of this behavior can be considered due to 

the increase of catalytic active sites. By 

increasing the amount of nanocatalyst to 70 mg, 

there is no significant change in the DBT removal.  
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Fig 4.Effect of temperature (a), oxidant ratio (b), catalyst dosage (c) and reaction time (d) 

Therefore, the optimal amount of BMIM-Ti-HPMo 

MCM41 nanocatalyst is 60 mg for DBT removal. 

3.2.4. Effect of reaction time on the ECODS process 

Fig 4d shows the effect of reaction time as an 

effective parameter on DBT removal in ECODS 

process. The highest amount of DBT removal was 

98%, which took place in 45 min. Increasing the 

contact time did not have a significant effect on 

the removal of dibenzothiophene. At the initial 

times of the reaction, the catalytic active sites for 

oxidation are large, that's why a high percentage 

of dibenzothiophene is absorbed in 45 min. 

However, as the contact time increases, the 

adsorption sites are occupied and therefore, the 

amount of DBT adsorption by the nanocatalyst is 

gradually decreases.  

3.2.5 Extractive-oxidative desulfurization of diesel 

fuel  

Investigating the performance of heterogeneous 

hybrid nanocatalyst on the desulfurization of 

four diesel fuel sampled from Arak Petrochemical 

(Arak, Iran) was studied.  

Fig 5 shows the results of DBT removal. As 

shown in the figure, the nanocatalyst has the 

ability to remove 98% of the residual sulfur 

content in diesel and gasoline. In this study, the 

removal efficiency of sulfur-containing 

compounds was studied at different times. From 

the mentioned figure, it can be deduced that the 

maximum amount of sulfur removal is done in 

the initial times (initial 20 min) and it takes 45 

min for the removal to reach its maximum 

efficiency. 
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Fig 5.Sulfur removal of DBT from 4 Diesel fuel samples 

4. Conclusion 

In this study, a cetyltrimethylammonium 

bromide-manganese phosphomolybdate 

nanocatalyst stabilized on MCM41 modified with 

organosilane was synthesized. The structure of 

the heterogeneous hybrid nanocatalyst was 

investigated and catalytic-oxidative 

desulfurization of DBT in gasoline was studied. In 

addition, the effect of various operating 

parameters such as temperature, reaction time, 

oxidant ratios, and the amount of nanocatalyst 

was evaluated. In the structure of the 

nanocatalyst, ionic liquid (BMIM) has been used 

as a transfer agent. Manganese is introduced into 

the structure of the catalyst, and finally the 

nanocatalyst is immobilized on mesoporous 

zeolite MCM41. Optimum conditions for 

removing 98% of DBT from diesel fuel, including 

application of temperature of 60 °C for 45 min 

using 40 mg of nanocatalyst and oxidant ratio of 

1:3, were obtained. 
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