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 Accelerating gas hydrate formation is crucial to exploiting 
its positive applications, as these ice-like structures can serve 
as a vast and clean source of energy. In this research, we 
delve into the influence of sodium dodecyl sulfate (SDS) on 
the growth rate of double tetra n-butylammonium chloride 
(TBAC) +methane semiclathrate hydrate. To investigate this, 
we conducted experiments utilizing a stirred batch cell with 
a total volume of 169 cm3. The cell's temperature was 
maintained at 278.15 K, while the initial pressures were set 
at 6 and 8 MPa. Comparing the results with pure water, SDS 
showed a significant positive effect on the growth rate of 
methane hydrate formation. However, when 400 ppm of SDS 
was introduced, it had a detrimental impact on the average 
growth rate of the double (TBAC + methane) semiclathrate 
hydrate within just 50 minutes of the process.  
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H I G H L I G H T S 

 A thermodynamic and kinetic promoter mixture is used for hydrate formation 

 The addition of 3 and 5 wt% TBAC increased the average growth rate of hydrate formation  

 Using TBAC and SDS together decreased growth rate compared to SDS solution and TBAC solution. 
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1. INTRODUCTION  

Methane hydrates, also known as methane 

clathrates, represent a unique class of crystalline 

structures in which methane molecules are 

encaged within cavities formed by molecules of 

water. These hydrates occur in nature under 

specific conditions of high-pressure and low-

temperature, commonly found in permafrost 

regions and marine sediments [1]. Gas hydrates 

have a wide range of positive utilization. They can 

be used for storage of gases, gas separation, 

wastewater treatment, juice concentration, 

energy recovery, gas transportation, water 

desalination, and CO2 capturing [2-8]. Despite the 

immense promise methane hydrates hold as a 

clean energy resource, their commercial viability 

hinges on understanding and controlling the 

kinetics of their formation [5, 9-11]. The 

formation process involves the nucleation of 

hydrate crystals and their subsequent growth, 

which is influenced by various factors, including 

temperature, pressure, guest molecules and the 

presence of additives [12-14]. A thorough 

comprehension of the kinetics is essential to 

develop efficient and cost-effective methods for 

hydrate production. Moreover, an in-depth study 

of formation of gas hydrates in the presence of 

specific additives can shed light on their potential 

role in enhancing or inhibiting the process, 

leading to improved exploitation strategies.  

Three typical structures can be identified when it 

comes to gas hydrates, including: Structure sI that 

is the most common and well-studied gas hydrate 

structure. It consists of water molecules forming 

hexagonal cages with one central guest molecule. 

The cages are arranged in a cubic lattice structure. 

Structure sII is similar to Structure sI, but has a 

larger cage size. The water molecules form 

pentagonal dodecahedral cages, accommodating 

multiple guest molecules. It is often found at 

higher pressures and structure sH that has a 

hexagonal prism structure and consists of two 

types of cages - large and small. Large cages 

contain guest molecules, while small cages can be 

empty. This structure is commonly found in 

certain clathrates, including gas hydrates [1, 15]. 

In 1940, Fowler et al. made a groundbreaking 
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discovery of a novel hydrate structure formed by 

tetra n-butyl ammonium salts. These structures, 

known as semiclathrates, involve the replacement 

of certain water lattice sites with guest molecules 

(anions) [16-21]. Semiclathrate hydrates (SCHs) 

are a promising phase change material (PCM) for 

storing and transporting the cold energy, as well 

as for improving the energy efficiency of cooling 

processes [21-24].  

The phase equilibrium of semiclathrate hydrates 

has been investigated by numerous researchers in 

recent years [25-31]. However, despite the 

understanding of the thermodynamics governing 

semiclathrate hydrate formation, there has been 

relatively less emphasis on studying the kinetics 

of these hydrates [32-34]. The aim of this study is 

to explore how the growth rate of double (TBAC+ 

methane) semiclathrate hydrate is affected by 

SDS. This research provides insight into the 

differentiated behavior of gas hydrate formation 

in the SDS presence and its implications for 

energy-related and other applications. This 

highlights the need for further research on the 

role of additives in shaping the properties and 

behavior of gas hydrates to pave the way for 

innovative and sustainable energy solutions. The 

innovation of this study is the targeted study of 

the effects of SDS on the growth rate of specific gas 

hydrate structures, investigating both beneficial 

and detrimental effects, and providing useful 

insights in the fields of energy, environment, and 

materials science. 

2. EXPERIMENTAL 

2.1. Materials and Apparatus 

The information regarding the chemicals used in 

this study, including their names, purities, 

molecular structures, and suppliers, is presented 

in Table 1. A visual representation of the 

experimental setup employed to study the 

kinetics of methane+TBAC semiclathrate hydrate 

formation is displayed in Fig 1.  

The main component of the equipment is a high-

pressure cell with an inner volume of 169 cm3 and 

a maximum operating pressure of 20 MPa. To 

ensure proper mixing within the cell, a rocking 

cell stirrer is utilized, which operates at a speed of 

10 rpm. The temperature of the cell is carefully 

regulated using a cooling system that circulates a 

mixture of 50% ethylene glycol and water as a 

coolant. Pressure measurements are taken using a 

0.01 MPa scale pressure transducer, while 

temperatures are monitored using a 0.1 K scale 

thermocouple (PT100). 

 
 

Table 1.The properties of the material used in the experiments 
Chemical structure Purity Suppliers CAS No. Material 

 
99% wt% Merck 151-21-3 sodium dodecyl sulfatea 

 

99.95 

mole% 

Technical 

Gas Service 
74-82-8 methane  

 

95 mole% Merck 1112-67-0 
tetra-n-butylammonium 

chlorideb 

aSDS; bTBAC. 
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Fig 1.Visual representation of the experimental apparatus 

2.2. Procedure 

Various solutions of TBAC and SDS were prepared 

in an aqueous form. Afterwards, a precise amount 

of the prepared solution was added to the batch 

crystallizer. The temperature of the crystallizer 

was regulated to 278.15 K by means of a 

circulator. Gas was subsequently introduced into 

the crystallizer until the desired pressure levels 

were reached. To agitate the solution within the 

crystallizer, a rocking cell stirrer was activated at 

a speed of 10 rpm.  

 

 

3. RESULTS AND DISCUSSION 

To examine the influence of SDS on the growth 

rate of (TBAC+methane) semiclathrate hydrate 

various aqueous solutions were prepared, 

including: (a) Aqueous solutions containing 3 

wt% and 3 wt% TBAC, (b) An aqueous solution 

with 400 ppm SDS, and (c) A TBAC + SDS mixture. 

Throughout the experiments, a constant 

temperature of 278.15 K and pressure of 6 MPa 

and 8 MPa were maintained within the cell to 

study the rate of TBAC+methane semiclathrate 

hydrate formation under these conditions. 

The average growth rate (Rav) within the first 50 

minutes of the process was evaluated using the 
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following equation which was used to evaluate the 

average rate of gas uptake (R50) within 50 min of 

the process.  

Methane,50

50

sol

n
R

n t





                                                 (1) 

Where, Methane,50n
, soln

, and t  represent the 

number of moles of methane converted to gas 

hydrate, the number of moles of feed water used, 

and the time period, respectively.  

Equation (2) was utilized to determine the 

quantity of methane uptake throughout the 50 

min of the process. 

Methane,50 Methane,0 Methane,50n n n  
                    (2) 

Where, Methane,0n
 and Methane,50n

, respectively, stand 

for the methane mole number in the gas phase at 

time t = 0 and time 50 min, and can be calculated 

by the following equations.  

0 0
Methane,0

0

P V
n

Z RT


                                                  (3) 

50 50
Methane,50

50

P V
n

Z RT


                                               (4) 

Where, subscripts 0 and 50, respectively, are the 

reactor conditions at beginning and time 50 min, 

and Z is evaluated using PR EOS [35]. 

     3 2 2 2 3Z  B 1 Z  A 3B 2B Z –  AB B B 0       
           

                              (5) 

A= 
(𝑎𝑐𝛼)𝑃

(𝑅𝑇)2
                                                                    (6)                                                                                                                         

B= 
𝑏𝑃

𝑅𝑇
                                                                           (7)                                                                                                       

ac= 0.45724
𝑅2𝑇𝑐

2

𝑃𝑐
2                                                       (8)                                                                                                               

b= 0.07780
𝑅𝑇𝑐

𝑃𝑐
                                                          (9) 

Here, α and m are PR parameters that obtained as 

[36], 

α= (1+ m (1- Tr
0.5)) 2                                             (10)                                                                                                          

m= 0.3746+ 1.5423𝜔- 0.2669ω2                      (11)  

Where, ω is the acentric factor of methane. 

Table 1 presents the growth rate of TBAC + 

methane semiclathrate hydrate during the first 50 

minutes of the process. Fig 2 and 3 illustrate the 

influence of TBAC on the growth rate of methane 

hydrate per mole of feed solution at a constant T 

= 278.15 K and pressures of 6 MPa and 8 MPa, 

respectively. 

 
Fig 2.Growth rate of double (TBC+methane) semiclathrate hydrate per mole of feed solution at P0 = 6 MPa and T 

= 278.15 K 
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Fig 3.Growth rate of double (TBAC+methane) semiclathrate hydrate per mole of feed solution at P0 = 8 MPa and 

T = 278.15 K

 Based on the data presented in Fig 2 and 3, as well 

as Table 1, it is evident that the inclusion of 3 wt% 

and 5 wt% of TBAC has not a significant influence 

on the average growth rate of methane at initial 

pressure of 6 MPa, while a positive effect can be 

seen at P0 = 8 MPa. 

At P0 = 8 MPa, the growth rate of formed hydrate 

in water is 0.40 mmol/mol.s, whereas in the TBAC 

solution (5 wt%), it is 0.70 mmol/mol.s. This 

indicates that the average growth rate of formed 

hydrate in the TBAC solution is 75% higher than 

in pure water under the mentioned 

thermodynamic conditions. By incorporating 

TBAC, the equilibrium pressure of methane 

hydrate formation is reduced, leading to a 

substantial increase in the driving force behind 

the process. This significant reduction in pressure 

moderates the thermodynamic conditions during 

methane hydrate formation [37-41]. By 

moderating Thermodynamics conditions, such as 

reducing the equilibrium pressure through the 

utilization of TBAC, the growth rate of the process 

is increased. This is because the reduction in 

pressure enhances the driving force of the 

process, leading to more efficient and faster 

methane uptake into the gas hydrate structure. 

 
Fig 4.The effect of TBAC on the growth rate of double (TBAC+methane) semiclathrate hydrate per mole of feed 

solution in presence of 400 ppm SDS at P0 = 6 MPa and T = 278.15 K 
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Fig 5.The effect of TBAC on the growth rate of double (TBAC + methane) semiclathrate hydrate per mole of feed 

solution in presence of 400 SDS at P0 = 8 MPa and T = 278.15 K

In Fig 4 and 5, and as supported by the data in 

Table 1, a comparison was made between the 

influence of SDS alone and SDS + TBAC on the 

growth rate of TBAC+methane semiclathrate 

hydrate. The investigation revealed that the 

average growth rate of TBAC+methane 

semiclathrate hydrate for the solution of 

SDS+TBAC is lower than that of the SDS solution, 

consistently observed at 278.15 K and both tested 

pressures. This negative effect on the growth rate 

might be attributed to the interaction between the 

released ions of TBAC and SDS within the aqueous 

solution. Such interactions could lead to changes 

in the process, affecting the growth rate of the 

hydrate crystals. 

 
Fig 6.The effect of SDS on the growth rate of double (TBAC+methane) semiclathrate hydrate per mole of feed 

solution at P0 = 6 MPa and T = 278.15 K 
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Fig 7.The effect of SDS on the growth rate of double (TBAC + methane) semiclathrate hydrate per mole of feed 

solution at P0 = 8 MPa and T = 278.15 K

 
Fig 8. Average growth rate of double (TBAC+methane) semiclathrate hydrate during a 50-minute timeframe of 

the process at 278.15 K 

Fig 6 and 7 compare the growth rates of (TBAC + 

methane) semiclathrate hydrate under the 

influence of TBAC and SDS+TBAC. The results 

revealed that in SDS+TBAC solutions, the growth 

rate of TBAC+methane semiclathrate hydrate is 

lower than when only TBAC is present.  

Fig. 8 illustrates the impact of various 

concentrations of used additives (SDS and TBAC) 

on the average growth rate of formed hydrate at 

278.15 K and P0 = 6 and 8 MPa. From the figure, it 

is evident that using SDS (400 ppm) yields the 

most significant improvement in the rate of gas 

uptake. However, when SDS and TBAC are present 

together, the average rate of methane uptake is 

lower than that observed in the both SDS-only 

TBAC-only solutions. 
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 4. CONCLUSION 

The influence of SDS on the average growth rate 

of (TBAC+methane) semiclathrate hydrate within 

a 50-minute period was investigated. 

Experimental results obtained at 278.15 K and P0 

= 6 and 8 MPa demonstrated that the addition of 

3 wt% and 5 wt% TBAC led to an increase in the 

average rate of methane uptake. However, when 

both TBAC and SDS were used simultaneously, 

their interaction resulted in a negative effect on 

the rate of methane uptake compared to the use of 

the aqueous solution of SDS alone. 
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