ISC, CAS, Google Scholar     h-index: 20

Document Type : Original Research Article

Authors

Department of Chemistry, Egerton University, P.O Box 536-20115, Egerton, Kenya

Abstract

Herein, we critically present theoretical modeling of toxic molecular compounds from biomass pyrolysis using the density functional theory formalism at the B3LYP level of theory coupled to 3-21G basis set. Detailed molecular modeling – geometry optimization, global hardness, and chemical potentials of the selected phenols and furans are reported. The thermal energy changes and reactivity are estimated from Gaussian’09 and Chemissian computational platforms. The formation of phenol and cresols are attributed to the thermally induced fragmentation of tyrosine via the rapture of the C-C bond (β-fission) which occurs via an endethermicity of +231.58 kJ/mol. The decarboxylation of tyrosine proceeds exothermally following an energy release of -14.36 kJ/mol. Subsequently, furans were formed from radical recombination during the thermal fragmentation of monomeric cellulose and tyrosine. The mechanistic formation of toxic molecular species from the thermal degradation of representative biomass materials has been proposed. From the global hardness data, it was noted that p-cresol was more reactive compared to phenol whereas alkylated benzofurans were more reactive than benzofuran because of their lower HOMO-LUMO energy gaps.

Graphical Abstract

‎A Mechanistic Formation of Phenolic and Furan-Based Molecular Products from Pyrolysis of Model Biomass Components

Keywords

Main Subjects

References
[1].        J.K. Kibet, L. Khachatryan, B. Dellinger, Phenols from pyrolysis and co-pyrolysis of tobacco biomass components. Chemosphere, 138, (2015) 259-265.
[2]         J.L. Gázquez, Perspectives on the density functional theory of chemical reactivity. Journal of the Mexican Chemical Society, 52 (2008) 3-10.
[3].        L.R. Domingo, P. Pérez, J.A. Sáez. Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC advances, 3(5) (2013) 1486-1494.
[4].        L.A.Z. Hernández, R.L. Camacho-Mendoza, S. González-Montiel, J. Cruz-Borbolla. The chemical reactivity and QSPR of organic compounds applied to dye-sensitized solar cells using DFT. Journal of Molecular Graphics and Modelling, 104 (2021) 107852.
[5].        P. Fuentealba and C. Cárdenas. Density functional theory of chemical reactivity. In: Chemical modelling, (2014) 151-174.
[6].        M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and GA. Petersson; et al. Gaussian 09, Revision A. 01; Gaussian. Inc.: Wallingford, CT, (2009)
[7]         R. G. Pearson. The HSAB principle—more quantitative aspects. Inorganica Chimica Acta, 240(1-2) (1995) 93-98.
[8].        W. Yang and R. G. Parr. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Sciences, 82(20) (1985) 6723-6726.
[9].        D. W. Rogers, A. A. Zavitsas and L. K. Rogers-Bennett. The Gaussian G4 structure, enthalpy, and free energy of formation of trans-dimethyl-, diethyl-, dipropyl-, and dibutylcyclopentanes. Journal of molecular modeling, 25(8) (2019) 1-7.
[10].     G. Liu, M M. Wright, Q. Zhao, RC. Brown, K. Wang and Y. Xue. Catalytic pyrolysis of amino acids: comparison of aliphatic amino acid and cyclic amino acid. Energy Conversion and Management, 112 (2016) 220-225.
[11].     C. Zhang, L. Chao, Z. Zhang, L. Zhang, Q. Li, H. Fan, S. Zhang, Q. Liu,Y. Qiao and Y. Tian. Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature. Renewable and sustainable energy reviews, 135 (2021) 110416.
[12].     N. Hassan, A. Jalil, C. Hitam, D. Vo and W. Nabgan. Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review. Environmental Chemistry Letters, 18(5) (2020) 1625-1648.
[13].     J. Bai, H. Gao, J. Xu, L. Li, P. Zheng, P. Li, J. Song, C. Chang and S. Pang. Comprehensive study on the pyrolysis product characteristics of tobacco stems based on a novel nitrogen-enriched pyrolysis method. Energy, (2021) 122535-122535.
[14].     L. Jie, L. Yuwen, S. Jingyan, W. Zhiyong, H. Ling, Y. Xi and W. Cunxin. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG–FTIR. Thermochimica acta, 467(1-2) (2008) 20-29.
[15]      H. Chen, Y. Xie, W. Chen, M. Xia, K. Li, Z. Chen, Y. Chen, H. Yang. Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS. Energy Conversion and Management, 196 (2019) 320-329.
[16].     R.K. Sharma,WG. Chan, J.I. Seeman and MR. Hajaligol. Formation of low molecular weight heterocycles and polycyclic aromatic compounds (PACs) in the pyrolysis of α-amino acids. Journal of Analytical and Applied Pyrolysis, 66(1-2) (2003) 97-121.
[17].     C. Perez Locas, V.A. Yaylayan. Origin and mechanistic pathways of formation of the parent furan A food toxicant. Journal of Agricultural and Food Chemistry, 52(22) (2004) 6830-6836.
[18].     F. Van Lancker, A. Adams, A. Owczarek-Fendor, B. De Meulenaer and N. De Kimpe. Mechanistic Insights into Furan Formation in Maillard Model Systems. Journal of Agricultural and Food Chemistry, 59(1) (2011) 229-235.
[19].     S. Nie, J. Huang, J. Hu, Y. Zhang, S. Wang, C. Li, M. Marcone and M. Xie. Effect of pH, temperature and heating time on the formation of furan in sugar–glycine model systems. Food Science and Human Wellness, 2(2) (2013) 87-92.
[20].     Y.J. Seok, J.Y. Her,Y.G. Kim, Y.M. Kim, S.Y. Jeong, M.K. Kim, J.Y. Lee, C.I.Kim, H.J. Yoon and K.G. Lee. Furan in thermally processed foods-a review. Toxicological Research, 31(3) (2015) 241-253.
[21].     A. Adams, F. Van Lancker, A. Owczarek-Fendor, B. De Meulenaer and N. De Kimpe. Mechanistic insights into furan formation in Maillard model systems. Journal of Agricultural and Food Chemistry, 59(1) (2011) 229–235.
[22].     D. Jiang, J. Li, S. Wang, H. Li, L. Qian, B. Li, X. Cheng, Y. Hu and X. Hu. Cyclic compound formation mechanisms during pyrolysis of typical aliphatic acidic amino acids. ACS Sustainable Chemistry & Engineering, 8(45) (2020) 16968-16978.
[23].     S.C. Moldoveanu. Pyrolysis of organic molecules. In: Pyrolysis of Other Nitrogen-Containing Compounds, Elsevier, (2019).
[24].     T. Sugahara, D. Hashizume, N. Tokitoh, H. Matsui, R. Kishi, M. Nakano and T. Sasamori. Characterization of resonance structures in aromatic rings of benzene and its heavier-element analogues. Physical Chemistry Chemical Physics, 24(37) (2022) 22557-22561.
[25]. P. Zong, Y. Jiang, Y. Tian,J. Li,M. Yuan, Y. Ji, M. Chen, D. Li and Y. Qiao. Pyrolysis behavior and product distributions of biomass six group components: Starch, cellulose, hemicellulose, lignin, protein and oil. Energy Conversion and Management, 216, (2020) 112777.
[26].     P. Humphreys, A. Laws and J. Dawson. A review of cellulose degradation and the fate of degradation products under repository conditions, (2010).
[27].     C. Castro and F. Rust. Thermal decomposition of acrolein. The attack of methyl and t-butoxy free radicals on acrolein. Journal of the American Chemical Society, 83(24) (1961) 4928-4932.
[28].     J. Zhang, Z. Shao, Y. Hu, B. Liu, Y. Zhang and S. Wang. Formation of a creatinine thermal degradation product and its role and participation in the radical pathway of forming the pyridine ring of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP). Food chemistry, 312 (2020) 126083.
[29].     J. Martínez. Local reactivity descriptors from degenerate frontier molecular orbitals. Chemical Physics Letters, 478(4-6) (2009) 310-322.
[30].     A. Bendjeddou, T. Abbaz, A. Gouasmia and D. Villemin. Molecular structure, HOMO-LUMO, MEP and Fukui function analysis of some TTF-donor substituted molecules using DFT (B3LYP) calculations. International Research Journal of Pure and Applied Chemistry, 12(1) (2016) 1-9.
[31].     F. Pereira, K. Xiao, D.A. Latino, C. Wu,Q. Zhang and J. Aires-de-Sousa. Machine learning methods to predict density functional theory B3LYP energies of HOMO and LUMO orbitals. Journal of chemical information and modeling, 57(1) (2017) 11-21.
[32].     M. Miar, A. Shiroudi, K. Pourshamsian, A. R. Oliaey and F. Hatamjafari. Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo [d] thiazole-2 (3 H)-imine and its para-substituted derivatives: Solvent and substituent effects. Journal of Chemical Research, 45(1-2) (2021) 147-158.
[33].     A.Q. Nguyen, N.T. Anh, T.A. Nguyên. Frontier orbitals: a practical manual. John Wiley & Sons. (2007)
[34].     M.J. Hoque, A. Ahsan, M.B. Hossain. Molecular Docking, Pharmacokinetic, and DFT Calculation of Naproxen and its Degradants. Biomedical Journal of Scientific & Technical Research, 9(5) (2018) 7360-7365.
[35]      L.R. Domingo, M. Ríos-Gutiérrez, P. Pérez. Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules, 21(6) (2016) 748.
[36].     R.G. Parr, L.V. Szentpály, S. Liu. Electrophilicity index. Journal of the American Chemical Society, 121(9) (1999) 1922-1924.
[37].     R.G. Pearson. Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences, 83(22) (1986) 8440-8441.
[38].     K. Chandrakumar and S. Pal. The concept of density functional theory based descriptors and its relation with the reactivity of molecular systems: A semi-quantitative study. International Journal of Molecular Sciences, 3(4) (2002) 324-337.
[39].     L.R. Domingo. Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules, 21(10) (2016) 1319.
[40].     H. Kasai, K. Tolborg, M. Sist, J. Zhang, V. R. Hathwar,  M. Ø. Filsø, S. Cenedese, K. Sugimoto, J. Overgaard and E. Nishibori. X-ray electron density investigation of chemical bonding in van der Waals materials. Nature materials, 17(3) (2018) 249-252.
[41].     J. Chen, Z. Xu, and Y. Chen. Electronic Structure and Surfaces of Sulfide Minerals: Density Functional Theory and Applications. Elsevier, (2020).
[42].     C. Matta and R. Gillespie. Understanding and interpreting molecular electron density distributions. Journal of Chemical Education, 79(9) (2002) 1141.
[43].     T. Stein, J. Autschbach, N. Govind, L. Kronik, R. Baer. Curvature and frontier orbital energies in density functional theory. The Journal of Physical Chemistry Letters, 3(24) (2012) 3740-3744.