ISC, CAS, Google Scholar     h-index: 20

Document Type : Original Research Article

Authors

1 Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri,Maiduguri, Nigeria

2 Department of Chemical Engineering, Faculty of Engineering, University of Maiduguri, Maiduguri, Nigeria

Abstract

Citrullus lanatus (watermelon) is a popular plant whose fruits are use in all parts of Nigeria as remedy for various diseases. In this present study, the phytochemical contents, antioxidant and cytotoxicity activities of extracts from the various layers (peel, rind, pulp and seeds), of watermelon fruit were evaluated. The phytochemical contents were evaluated qualitatively while NMR and GC-MS used to identify phytoconstituents present. Antioxidant activities were examined by DPPH, H2O2 radical scavenging, ORAC, FRAP, and ABTS assays. In vitro cytotoxic activity was examined by MTT assay while apoptosis was detected by flow cytometry as well as fluorescence microscopy. Phytochemical evaluation showed the presence of various metabolites in the pulp and seed extracts. GC-MS and NMR elucidations of compound revealed the presence of methyl stearate ester. Antioxidant evaluations by various radical scavenging showed that the pulp (PP) had IC50 value of 8-22 µg/mL, indicating potential antioxidant effect. In vivo evaluation of superoxide dismutase, catalase activities and total proteins in serum of rats further confirmed the in vitro studies. Antiproliferative study showed that the pulp and the seeds significantly displayed concentration-dependent effects. These results were further replicated in the cytotoxicity effect against MCF-7 and HMVII cells with much reduced IC50 on MCF-7, as well as early and late apoptosis after 72 h caused by exposure of pulp extract in vitro. Our study showed that the pulp and seed layers of watermelon contain phytochemicals which were responsible for its antioxidant and cytotoxicity effects 

Graphical Abstract

Phytochemical evaluation, in vitro-in vivo antioxidant and cytotoxicity activities of various layers of watermelon fruit Citrullus lanatus (Cucurbitaceae) Matsum. & Nakai

Keywords

Main Subjects

  1. References

    [1].  A. Sofowora, E. Ogunbodede, A. Onayade,

            Complementary & Medicines, A. The role

            and place of medicinal plants in the

            strategies for disease prevention. African

            journal of traditional, complementary, and

            alternative medicines : AJTCAM, 10(5)

            (2013)210–229.

            https://doi.org/10.4314/ajtcam.v10i5.2.

    [2]. D.S. L. Bruck, L. A. Gindri, D.A.T. Fortes, F.

             Kubiça, J. Enderle, R. Roehrs, M.E. Silva, V.

             Manfredini, & E..L.G. Denardin,.

             Phytochemical Analysis, Antioxidant

             Activity, Antimicrobial Activity, and

             Cytotoxicity of Chaptalia nutans Leaves.

             Advances in Pharmacological and

             Pharmaceutical Sciences, (2020)3260745.

             doi: 10.1155/2020/3260745.   

    [3].  J.K. Choge. Malnutrition: Current Challenges

             and Future Perspectives. In M. Imran, & A.

             Imran (Eds.), Malnutrition. (2020)

             IntechOpen.

             https://doi.org/10.5772/intechopen.92007 

    [4].  D-P. Xu, Y. Li, X. Meng, T. Zhou, Y. Zhou, J.J.

             Zhang, H.B. Li. Natural antioxidants in

              foods and medicinal plants: Extraction,

              assessment and      resources. International

              journal of molecular sciences, 18, 96 (2017).

              doi: 10.3390/ijms18010096

    [5].  A. Karadag, B. Ozcelik, S.J.F.A.M. Saner.

           Review of methods to determine

           antioxidant capacities. Food Anal

           Methods, 2 (2009) 41-60.

           doi:10.1007/s12161-008-9067-7

     [6].  B. Olayinka, E.J.I.R.J Etejere. Proximate and

              Chemical Compositions of Watermelon

              (Citrullus lanatus (Thunb.) Matsum and

              Nakai cv Red and Cucumber (Cucumis

              sativus L. cv Pipino). International Food

              Research Journal, 25 (2018) 1060-1066.  

    [7].   C. Bvenura, A.J.J. Afolayan, A. J. J. F. R. I. The

              role  of wild vegetables in household food

              security in  South Africa: A review. Food

              Research  International, 76 (2015) 1001-

    1. doi:10.1016/J.FOODRES.2015.06.013

     [8].  S. Adeyeye, T.B. Olushola, T. Abegunde, A.

              Adebayo-Oyetoro, H. Tiamiyu, F.J.F.R.

              Idowu-Adebayo. Evaluation of

              nutritional composition, physico-chemical

              and sensory properties of ‘Robo’ (A

              Nigerian traditional snack) produced from

              watermelon (Citrullus lanatus (Thunb.)

              seeds. Food Research, 4 (1) (2020) 216223.

              doi.org/10.26656/fr.2017.4(1).230.    

    [9].   A. Sofowora. Medicinal plants and

              traditional medicine in Africa, 2nd edition.

              (2006) Ibadan Spectrum Books, 289Pp.

    [10]. C.K. Kokate. Practical Pharmacognosy

              (1995) New-Delhi, India. 55.

    [11]. G.E. Trease, W.C. Evans. Pharmacognosy

              (2002) W. B. Saunders, London, UK, 15th

              Edition.

    [12].  C.A. Ukwubile, E.O. Ikpefan, T.S. Malgwi,

             A.B. Bababe, J.A. Odugu, A.N. Angyu, O.

             Otalu, M.S. Bingari, H.I. Nettey.

             Cytotoxic effects of new bioactive

             compounds isolated from a Nigerian

             anticancer plant Melastomastrum

             capitatum Fern. leaf extract. Scientific

             African,8 (2020) e00421.

             doi.org/10.1016/j.sciaf. 2020.e00421. 

    [13]. M.S. Blois. Antioxidant Determinations by

              the Use of a Stable Free Radical. Nature,

              181 (1958) 1199-1200.

               http://dx.doi.org/10.1038/1811199a0.

    [14]. S.O. Onoja, Y.N. Omeh, M.I. Ezeja,

             M.N.Chukwu. Evaluation of the In Vitro

     

             and In Vivo Antioxidant Potentials of

            Aframomum melegueta Methanolic Seed

             Extract. Journal of Tropical Medicine, 6

             (2014).

             https://doi.org/10.1155/2014/159343.  

    [15].  R.J. Ruch, K.A. Crist, J.E. Klaunig. Effects of

                culture duration on hydrogen peroxide-

                induced hepatocyte toxicity. Toxicol Appl

                Pharmacol., 100(3) (1989) 451-64. doi:

                10.1016/0041-008x (89)90293-7100

    [16].   R.L.  Prior, H. Hoang, L. Gu, X. Wu, M.

                Bacchiocca, L. Howard, M. Hampsch-

                Woodill, D. Huang, B. Ou. R. Jacob. Assays

                 for hydrophilic and lipophilic antioxidant

                 capacity (oxygen radical absorbance

                 capacity (ORAC(FL))) of plasma and other

                  biological and food samples. J Agric Food

                  Chem., 51(11) (2003) 3273-9. doi:

                  10.1021/jf0262256.

    [17].    K. Thaipong, U. Boonprakob, K. Crosby,

    1. Cisneros-Zevallos, D.H. Byrne.

               Comparison of ABTS, DPPH, FRAP,

               and ORAC assays for estimating

               antioxidant activity from guava fruit

               extracts. Journal of Food Composition

               and Analysis, 19 (6–7) (2006) 669-675.

               doi.org/10.1016/j.jfca.2006.01.003.

     [18].    I. Benzie, J. Strain. The Ferric Reducing

               Ability of Plasma (FRAP) as a Measure

               of “Antioxidant Power: The FRAP

               Assay”. Analytical Biochemistry, 239

               (1996)70-76.

      http://dx.doi.org/10.1006/abio.1996.0292

    [19].    S. Surveswaran, Y. Cai, H. Corke, M.

                  Sun.Systematic evaluation of natural  

                  phenolic antioxidants from 133 Indian

                  medicinal plants. Food Chemistry, 102

                  (2007)938–953.

                  doi:10.1016/j.foodchem.2006.06.033.

    [20].     Y. Cai, Q. Luo, M. Sun, H. Corke.

                   Antioxidant activity and phenolic

                   compounds of 112 traditional Chinese

                   medicinal plants associated with

                   anticancer. Life Sci., 74(2004)2157-2184.

                   doi: 10.1016/j.lfs.2003.09.047.  

    [21].      D. Rosi, G. Peruzzotti, E.W. Dennis, D.A.

                   Berberian, H. Freele, S. Archer. A new,

                    active metabolite of ‘Miracil D.’. Nature,

                    208 (1965) 1005–1006. doi:

                  10.1038/2081005a0. 

    [22].     A. Banerjee, H. Ahmed, P. Yang, S.J.  Czinn.

                  Blanchard TG. Endoplasmic reticulum

                  stress and IRE-1 signaling cause apoptosis

                  in colon cancer cells in response to

                  andrographolide treatment.

                  Oncotarget.,7(2016) 41432–44. doi:

                  10.18632/oncotarget.9180.

     [23].    K. Liu et al. Evaluating cell lines as models

                  for metastatic breast cancer through

                  integrative analysis of genomic data. Nat.

                  Commun. (2019).

                  doi.org/10.1038/s41467-019-10148-6.

    [24].     H.B. Yesufu, P.U. Bassi, I.Z. Khaz, F.I.

                  Abdulrahaman, G.T. Mohammed.

                  Phytochemical screening and

                  hepatoprotective properties of aqueous

                  root bark extract of Sarcocephalus

                  latifolius (Smith) Bruce (African peach).

                  Archives of Clinical Microbiology, 1(2)

                  (2010) 1–5.  doi: 10:3823/207.  

    [25].     H.H. Draper, M. Hadley. Malondialdehyde

                   determination as index of lipid peroxidation.Methods in Enzymology,186 (1990) 421-31. doi: 10.1016/0076-6879(90)86135-i.

    [26].      Y.L. Sun, L.W. Oberley, Y. Li. A simple

                   method for clinical assay of superoxide

                   Dismutase. Clinical Chemistry, 34(3)

                   (1988) 497–500. PMID: 3349599.

    [27]. S.E. Atawodi. Evaluation of the hypoglycaemic, hypolipidemic and antioxidant effects of methanolic extract of “Ata-Ofa” polyherbal tea (A-polyherbal) in alloxan-      induced diabetic rats. Drug Invention Today, 3 (2011) 270–276. www.ditonline.info

    [28].  E.O. Ikpefan, B.A. Ayinde, J.O. Ikpefan. Comparative phytochemical and growth inhibitory studies on the leaf and root bark extracts of Securinega
    Virosa (roxb ex. Willd) Baill (Euphoriaceae). Journal of Pharmaceutical and Allied Sciences, 12(1) (2015) 2219-2227.

    [29].     T.  Mosmann. Rapid colorimetric assay for

                  cellular growth and survival. Application

                  to proliferation and cytotoxicity assays. J.

                  Immunol. Methods, 65 (1983) 55–63.

                doi:10.1016/0022-1759(83)90303-4. 

    [30].   V.R. Lombardi, L.I. Carrera, R. Cacabelos.

                In Vitro Screening for Cytotoxic Activity

                of Herbal Extracts. Evid Based

                 Complement Alternat Med., (2017)

    1. doi: 10.1155/2017/2675631.

    [31].   V.K. Nelson, N.K. Sahoo, M. Sahu et al. In

                 vitro anticancer activity of Eclipta alba

                 whole plant extract on colon cancer cell

                 HCT-116. BMC Complement Med Ther., 20

                 (2020) 355.

                 doi.org/10.1186/s12906-020-03118-9

    [32].  C.A. Ukwubile, E.O. Ikpefan, T.S. Malgwi,

             M.Y. Dibal, A.C. Famurewa, H. Rasheed-Jada,  

                H.H. Milagawanda, A.U. Suleiman.

                Antioxidant, anti-inflammatory, analgesic

                and in vitro-in vivo cytotoxicity effects of

                Spondias venulosa (Engl.) Engl. leaf extracts

                on MCF-7/S0.5 and OV7 cancer cell lines.  

                Scientific African, 13 (2021) e00917.

                doi.org/10.1016/j.sciaf. 2021.e00917.

    [33].  R. Sumathy, S. Sankaranarayanan, P.S.

               Bama, J. Ramachandran, M. Vijayalakshmi,

               M.Deecaraman, S.L. Nagar. Antioxidant and

               antihemolytic activity of flavonoid extract

                from fruit peel of Punica granatum. Asian

                Journal of Pharmaceutical and Clinical   

                Research, 6(2) (2013) 208-2011.

    [34].  D. Sreeramulu, M. Raghunath, M.

               Antioxidant activity and phenolic content of

               roots, tubers and vegetables commonly

               consumed in India. Food Research

               International., 43 (2010) 1017-1020.

               doi.org/10.1016/j.foodres.2010.01.009

    [35].  Federal Ministry of Health. Cancer Cases &

               Update (2020). Federal Ministry of Health

               News Bulleitin, Abuja.

    [36].  N.A. Jaradat, A.N. Zaid, F. Hussein.

               Investigation of the antiobesity and

               antioxidant properties of wild Plumbago

               europaea and Plumbago auriculata from

               North Palestine. Chem. Biol. Technol. Agric.

               3 (2016) 31.

               doi.org/10.1186/s40538-016-0082-4

    [37].  B.K. Velmurugan, J.T. Lin, B. Mahalakshmi,

               Y.C. Chuang, C.C. Lin, Y.S.  Lo, M.J. Hsieh,

               M.K. Chen. Luteolin-7-O-Glucoside Inhibits

               Oral Cancer Cell Migration and      Invasion

               by Regulating Matrix Metalloproteinase-2

               Expression and Extracellular Signal-

               Regulated Kinase Pathway. Biomolecules,10

               (4) (2020) 502. doi:

               10.3390/biom10040502.

    [38].  Pinto et al. Antifungal and antioxidant

                activity of fatty acid methyl esters from

                vegetable oils. Annals of the Brazilian

                Academy of Sciences, 89 (3) (2017) 1671-

    1. https://dx.doi.org/10.1590/0001-
    2.  

    [39].  H.  Abdel-Hady, E.A. El-Wakil, M. Abdel-

               Gawad. GC-MS Analysis, Antioxidant and

               Cytotoxic Activities of Mentha spicata

               European Journal of Medicinal Plants, 26(1)

               (2018) 1-12. doi: 10.9734/EJMP/2018/45751.

    [40].  T. Bakirel,U. Bakirel, O.U. Keles, S.G. Ulgen,

    1. Yardibi. In vivo assessment of

                antidiabetic and antioxidant activities of

                rosemary (Rosmarinus officinalis) in

                alloxan-diabetic rabbits. Journal of

                Ethnopharmacology, vol. 116 (1) (2008)

                64–73. doi: 10.1016/j.jep.2007.10.039.

    [41].   M. Rojkind, J.A. Dominguez-Rosales, N.

                Nieto, P.J.C. Greenwel, M.L.S. Cmls. Role of

                hydrogen peroxide and oxidative stress in

                healing responses. Cell Mol Life Sci.,

                59(11) (2002) 1872-91. doi:

                10.1007/pl00012511.

    [42].  C. Ransy, C. Vaz, A. Lombès, F.  Bouillaud.

               Use of H2O2 to Cause Oxidative Stress, the

               Catalase Issue. International Journal of

               Molecular Sciences, 21(23) (2020) 9149.

               https://doi.org/10.3390/ijms21239149.

    [43].  K.L. Ruiz, L.A. Cira-Chávez, M.I. Estrada-

                Alvarado, L.E.  Gassos-Ortega, J.D. Ornelas-

               Paz, M.A. Mata. Flavonoids: Important

               Biocompounds in Food (2017) 353-369.

                http://dx.doi.org/10.5772/67864.  

    [44].  P.A.  Ofosu-Aikins. Evaluation of

               Antioxidant and Cytotoxic Properties of

               Citrullus   lanatus Extracts. M.Phil. Chemical

               Pathology Thesis/ Dissertation, University

               of Ghana, Accra (2018). URI:

                http://ugspace.ug.edu.gh/handle/12345../

    [45].  A.C. Maritim, R.A. Sanders, J.B. Watkins III.

               Diabetes, oxidative stress, and

               antioxidants: a review. Journal of

               Biochemical and Molecular Toxicology,

              17(1) (2003) 24-38. doi:

              10.1002/jbt.10058.

    [46].  R. Kohen, A. Nyska. Oxidation of biological

               systems: oxidative stress phenomena,

               antioxidants, redox reactions, and methods

               for their quantification. Toxicologic

               Pathology, 30(6) (2002) 620–650. doi:

               10.1080/01926230290166724.

    [47]. O.O. Ogbole, P.A. Segun, A.J. Adeniji. In vitro

               cytotoxic activity of medicinal

               plants from Nigeria ethnomedicine on

               Rhabdomyosarcoma cancer cell line and

               HPLC analysis of active extracts. BMC

               Complement Altern Med., 17(2017) 494. doi:

               10.1186/s12906-017-2005-8.

    [48]. H.  Lee, I. Kim, S.K. Han et al. Domain-

               mediated interactions for protein subfamily

               identification. Sci. Rep., 10 (2020) 264.

               https://doi.org/10.1038/s41598-019-

               57187-z.

    [49]. H.  Khan, H. Ullah, M. Aschner, W.S. Cheang,

              E.K. Akkol. Neuroprotective Effects of

              Quercetin in Alzheimer’s Disease.

               Biomolecules, 10 (1) (2020) 59. doi:

               10.3390/biom10010059. 

     [50].  Q. Qian, W. Chen, Y. Cao, Q. Cao, Y. Cui, Y. Li,

    1. Wu. Targeting Reactive Oxygen Species

                 in Cancer via Chinese Herbal Medicine.

                 Oxidative Med Cell Longev., (2019)

                 9240426.. doi: 10.1155/2019/9240426
    [51].  G.  Indrayanto, G. S. Putra, S. Suhud. Chapter

               Six - Validation of in-vitro bioassay

                methods: Application in herbal drug

                research, Editor(s): Al-Majed, A.A., Profiles

                of Drug Substances, Excipients and Related

                Methodology. Academic Press, 46 (2021)

                273-307.

                doi.org/10.1016/ bs. podrm.2020.07.005

    [52].  H.N. Oh, M.H. Lee, E. Kim, A.W. Kwak, G.

               Yoon, S.S. Cho, K. Liu, J.I.  Chae, J.H. Shim.

               Licochalcone D Induces ROS-Dependent

               Apoptosis in Gefitinib-Sensitive or

               Resistant Lung Cancer Cells by Targeting

               EGFR and MET. Biomolecules, 10 (2) (2020)

    1. doi: 10.3390/biom10020297

    [53].  A.V. Snezhkina, A.V. Kudryavtseva, O.L.

               Kardymon, M.V.Savvateeva, N.V. Melnikova,

               G.S. Krasnov, A.A. Dmitriev. ROS Generation

               and Antioxidant Defense Systems in

               Normal and Malignant Cells. Oxidative Med

               Cell Longev.,(2019) 6175804. doi:

               10.1155/2019/6175804.