Document Type : Original Research Article


1 Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran

2 Department of Chemistry, Faculty of Science, Islamic Azad University, Shahremajlesi, Iran


 New modified chitosan Schiff base (3E-2H-BCs) was prepared via a condensation reaction between 3-ethoxy-2-hydroxybenzaldehyde and chitosan. The title compound 3E-2H-BCs was characterized by various techniques such as FT-IR, UV-Vis, XRD, SEM and TG-DTA. The results show that the title compound 3E-2H-BCs was successfully prepared. In addition, the title compound 3E-2H-BCs applied as an efficient adsorbent for methyl green (MG) removal from aqueous solution and the effect of contact time and adsorbent dosage has been studied. The equilibrium of dye adsorption by 3E-2H-BCs was reached at 1 min contact time at the presence of MG. The dye adsorption results show that the title compound 3E-2H-BCs is as an efficient adsorbent for other dye removal from wastewater.

Graphical Abstract

Fast removal of methyl green from aqueous solution by adsorption onto new modified chitosan Schiff base


Main Subjects

[1] D. Yang, L. Qiu, Y. Yang, Efficient adsorption of methyl orange using a modified chitosan magnetic composite adsorbent, J. Chem. Eng. Data 61 (2016) 3933-3940.
[2] Rahmi, Ismaturrahmi, I. Mustafa, Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem. J. 144 (2019) 397-402.
[3] P. Ke, D. Zeng, K. Xu, J. Cui, G. Wang, Preparation of quaternary ammonium salt-modified chitosan michrospheres and their application in dying wastewater treatment, ACS Omega 5 (2020) 24700-24707.
[4] F.C. Tsai, N. Ma, T.C. Chiang, L.C. Tsai, J.J. Shi, Y. Xia, T. Jiang, S.K. Su, F.S. Chuang, Adsorptive removal of methyl orange from aqueous solution with crosslinking chitosan microspheres, J. Water Process Eng. 1 (2014) 2-7.
[5] H. Wu, S. Wang, H. Kong, T. Liu, M. Xia, Performance of combined process of anoxic baffled reactor-biological contact oxidation treating printing and dying wastewater, Bioresour. Technol. 98 (2007) 1501-1504.
[6] C. Shen, Y. Pan, D. Wu, Y. Liu, C. Ma, F. Li, H. Ma, Y. Zhang, A crosslinking-induced precipitation process for the simultaneous removal of poly(vinyl alcohol) and reactive dye: The importance of covalent bond forming and magnesium coagulation. Chem. Eng. J. 374 (2019) 904-913.
[7] H.D. Kiriarachchi, K.M. Abouzeid, L. Bo, M.S. El-Shall, Growth mechanism of sea urchin ZnO nanostructure in aqueous solutions and their photocatalytic activity for the degradation of organic dyes, ACS Omega 4 (2019) 14013-14020.
[8] L. Zhai, Z. Bai, Y. Zhu, B. Wang, W. Luo, Fabrication of chitosan microsphere for efficient adsorption of methyl orange, Chin. J. Chem. Eng. 26 (2018) 657-666.
[9] M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.Z. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzegar, Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review, Carbohydr. Polym. 113 (2014) 115-130.
[10] G. Yuvaraja, D.Y. Chen, J.L. Pathak, J. Long, M.V. Subbaiah, J.C. Wen, C.L. Pan, Preparation of novel aminated chitosan schiff’s base derivative for the removal of methyl orange dye from aqueous environment and its biological applications, Int. J. Biol. Macromol. 146 (2020) 1100-1110.
[11] A. Maghni, M. Ghelamallah, A. Benghalem, Sorptive removal of methyl green from aqueous solutions using activated bentonite, Acta Phys. Pol. A. 132 (2017) 448-450.
[12] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Coll. Interface Sci. 209 (2014) 172-184.
[13] R. Raliya, C. Avery, S. Chakrabarti, P. Biswas, Photocatalytic degradation of methyl green dye by pristine titanium dioxide, zinc oxide, and graphen oxide nanostructures and their composites unde visible light irradiation, App. Nanosci. 7 (2017) 253-259.
[14] G. Pandey, S. Singh, G. Hitkari, Synthesis and characterization of polyvinyl pyrrolidone (PVP)-coated Fe3O4 nanoparticles by chemical co-precipitation method and removal of Congo red dye by adsorption process, Int. Nano Lett. 8 (2018) 111-121.
[15] J. Wang, X. Shao, Q. Zhang, G. Tian, X. Ji, W. Bao, Preparation pf mesoporous magnetic Fe2O3 nanoparticle and its application for organic dye removal, J. Mol. Liq. 248 (2017) 13-18.
[16] B. Saha, S. Das, J. Saikia, G. Das, Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: A comparative study, J. Phys. Chem. C. 115 (2011) 8024-8033.
[17] K. Sahu, J. Singh, S. Mohapatra, Photocatalytic and catalytic removal of toxic pollutants from water using CuO nanosheets, J. Mater. Sci. Mater. Elect. 30 (2019) 6088-6099.
[18] L. Ai, Y. Zeng, Hierarchical porous NiO architectures as highly recyclable adsorbents for effective removal of organic dye from quous solution, Chem. Eng. J. 215-216 (2013) 269-278.
[19] H.A. Al-Aoh, Adsorption performance of nickel oxide nanoparticles (NiO NPs) towards bromophenol blue dye (BB), Desal. Water Treat. 110 (2018) 229-238.
[20] M. Rashad, H.A. Al-Aoh, Promising adsorption studies of bromophenol blue using copper oxide nanoparticles, Desal. Water Treat. 139 (2019) 360-368.
[21] D.S. Chauhan, M.A. Jafa Mazumder, M.A. Quraishi, K.R. Ansari, Chitosan-cinnamaldehyde Schiff base: A bioinspried macromolecule as corrosion inhibitor for oil and gas industry, Int. J. Biol. Macromol. 158 (2020) 127-138.
[22] S. Lal, S. Arora, V. Kumar, S. Rani, C. Sharma, P. Kumar, Thermal and biological studies of Schiff bases of chitosan derived from heteroaryl aldehydes, J. Therm. Anal. Calorim. 132 (2018) 1707-1716.
[23] N. Nigam, S. Kumar, P.K. Dutta, S. Pei, T. Ghosh, Chitosan containing azo-based Schiff bases: themal, antibacterial and birefringence properties for bio-optical devices, RSC Adv. 6 (2016) 5575-5581.
[24] N.Q. Haj, M.O. Mohammed, L.E. Mohammood, Synthesis and biological evaluation of three new chitosan Schiff base derivatives, ACS Omega 5 (2020) 13948-13954.
[25] S. Shahraki, H.S. Delarami, Magnetic chitosan-(D-glucosimine methyl) benzaldehyde Schiff base for Pb2+ ion removal. Experimental and theoretical methods, Carbohyd. Polymers 200 (2018) 211-220.
[26] S. Shahraki, H.S. Delarami, F. Khosravi, Synthesis and characterization of an adsorptive Schiff base-chitosan nanocomposite for removal of Pb(II) ion from aqueous media, Int. J. Biol. Macromol. 139 (2019) 577-586.
[27] G. Yuvaraja, Y. Pang, D.Y. Chen, L.J. Kong, S. Mehmood, M.V. Subbaiah, D.S. Rao, C.M. Pavuluri, J.C. Wen, G.M. Reddy, Modification of chitosan macromolecule and its mechanism for the removal of Pb(II) ions from aqueous environment, Int. J. Biol. Macromol. 136 (2019) 177-188.
[28] Y. Yan, G. Yuvaraja, C. Liu, L. Kong, K. Guo, G.M. Reddy, G.V. Zyryanov, Removal of Pb(II) ions from aqueous media using epichlorohydrin crosslinked chitosan Schiff’s base@Fe3O4 (ECCSB@Fe3O4), Int. J. Biol. Macromol. 117 (2018) 1305-1313.
[29] G. Yuvaraj, M.V. Subbaiah, Removal of Pb(II) ion by using magnetic chitosan-4-((pyridine-2-ylimino),ethyl)benzaldehyde Schiff’s base, Int. J. Biol. Macromol. 93 (2016) 408-417.
[30] Z. Weijiang, Z. Yace, G. Yuvaraja, X. Jiao, Adsorption of Pb(II) ions from aqueous environment using eco-friendly chitosan Schiff’s base@Fe3O4 (CSB@Fe3O4) as an adsorbent; kinetics, isotherm and thermodynamic studies, Int. J. Biol. Macromol. 105 (2017) 422-430.
[31] M. Li, Z. Zhang, R. Li, J.J. Wang, A. Ali, Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan, Int. J. Biol. Macromol. 86 (2016) 876-884.
[32] M.S. Hussain, S.G. Musharraf, M.I. Bhanger, M.I. Malik, Salicylaldehyde derivative of nano-vhitosan as an efficient adsorbent for lead(II), copper(II) and cadmium(II) ions, Int. J. Biol. Macromol. 147 (2020) 643-652.
[33] A. Razzaz, S. Ghorban, L. Hosayni, M. Irani, M. Aliabadi, Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions, J. Taiwan Inst. Chem. Eng. 58 (2016) 333-343.
[34] G. Yuvaraja, D.Y. Chen, J.L. Pathak, J. Long, M.V. Subbaiah, J.C. Wen, C.L. Pan, Preparation of novel aminated chitosan schiff’s base derivative for the removal of methyl orange dye from aqueous environment and its biological applications, Int. J. Biol. Macromol. 146 (2020) 1100-1110.
[35] S. Cinar, U.H. Kaynar, T. Aydemir, S.C. Kaynar, M. Ayvacikli, An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/chitosan composite beads, Int. J. Biol. Macromol. 96 (2017) 459-465.
[36] Y. Haldorai, J.J. Shim, An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent, App. Surf. Sci. 292 (2014) 447-453.
[37] U. Habiba, T.A. Siddique, J.J.L. Lee, T.C. Joo, B.C. Ang, A.M. Afifi, Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane, Carbohyd. Polym. 191 (2018) 79-85.
[38] L. Zhai, Z. Bai, Y. Zhu, B. Wang, W. Luo, Fabrication of chitosan microspheres for efficient adsorption of methyl orange, Chin. J. Chem. Eng. 26 (2018) 657-666.
[39] L. Obeid, A. Bee, D. Talbot, S. Ben Jaafar, V. Dupuis, S. Abramson, V. Cabuil, M. Welschbillig, Chitosan/maghemite composite: A megsorbent for the adsorption of methyl orange, J. Coll. Interface Sci. 410 (2013) 52-58.
[40] A. Foroughnia, A.D. Khalaji , E. Kolvari, N. Koukabi, Synthesis of new chitosan Schiff base and its Fe2O3 nanocomposite: Evaluation of methyl orange removal and antibacterial activity, Int. J. Biol. Macromol. 177 (2021) 83-91.
[41] N. Bhullar, K. Kumari, D. Sud, A biopolymer-based composite hydrogel for rhodamine 6G dye removal: its synthesis, adsorption isotherms and kinetics, Iran. Polym. J. 27 (2018) 527-535.
[42] W.S. Wan Ngah, M.A.K.M. Hanafiah, S.S. Yong, Adsorption of humic acid from aqueous solutions on crosslinked chitosan-epichlorohydrin beads: Kinetics and isotherm studies, Coll. Surf. B 65 (2008) 18-24.
[43] T. Baran, A. Mentes, H. Arslan, Synthesis and characterization of water O-carboxymethyl chitosan Schiff base and Cu(II) complexes, Int. J. Biol. Macromol. 72 (2015) 94-103.
[44] T. Vadivel, M. Dhamodaran, S. Kulathooran, S. Kavitha, K. Amirthaganesan, S. Chandrasekaran, S. Ilayaraja, S. Senguttuvan, Rhodium(III) complexes derived from complexation of metal with azomethine linkage of chitosan biopolymer Schiff base ligand: spectral, thermal, morphological and electrochemical studies, Carbohydr. Res. 487 (2020) 107878.
[45] H.F.G. Barbosa, E.T.G. Cavalheiro, The influence of reaction parameters on complexation of Zn(II) complexes with biopolymeric Schiff bases prepared from chitosan and salicylaldehyde, Int. J. Biol. Macromol. 121 (2019) 1179-1185.
[46] S.M. Alardehi, T.M. Albayati, J.M. Alrubaye, Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column, Heliyon 6 (2020) e03253.
[47] P. Sharma, B.K. Saikia, M.R. Das, Removal of methyl green dye molecule from aqueous system using reduced graphen oxide as an efficient adsorbent: Kinetics, isotherm and thermodynamic parameters, Coll. Surf. A. Physicochem. Eng. Aspects 457 (2014) 125-133.
[48] K. Rida, K. Chaibeddra, K. Cheraitia, Adsorption of cationic dye methyl green from aqueous solution onto activated carbon prepared from Brachychiton Populneus fruit shell, Ind. J. Chem. Tecnol. 27 (2020) 51-59.
[49] X. Tang, Y. Li, R. Chen, F. Min, J. Yang, Y. Dong, Evaluation and modeling of methyl green adsorption from aqueous solutions using loofah fibers, Kor. J. Chem. Eng. 32 (2015) 121-131.
[50] M. Abbas, T. Aksil, M. Trari, Removal of toxic methyl green (MG) in aqueous solutions by apricot stone activated carbon - equilibrium and isotherms modeling, Desal. Water Treat. 124 (2018) 93-101.
[51] Y. Satlaoui, M. Trifi, D. Fkih Romdhane, A. Charef, R. Azouzi, Removal properties, mechanisms, and performance of methyl green from aqueous solution using raw and purified sejnane clay type, J. Chem.(2019) Article ID 4121864, 15 pages.
[52] A.A. Atshan, Adsorption of methyl green dye onto bamboo in batch and continuous system, Iraqi J. Chem. Petrol. Eng. 15 (2014) 95-72