Experimental Study of Carbon Dioxide Absorption in Diethyl Ethanolamine (DEEA) in the Presence of Titanium Dioxide (TiO$_2$)

Haniyeh Shamsin Beyranvand1, Masoomeh Mirzaei Ghaleh Ghabadi*$_2$, Hamid Sarlak1

1Department of Chemical engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
2 Assistant Professor, Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

ABSTRACT

Fossil fuels are the main source of CO$_2$ emissions into the atmosphere, which are sources of air pollutants. Environmental research has confirmed that atmospheric CO$_2$ concentration has risen from 280 ppm in 1800 to 358 ppm in 1994 (an increase of 27.86%). Russia, the United States, China, the rest of the Asian countries, Latin American countries, and African countries accounted for 27, 22, 11, 13, 4, and 3% of the total global CO$_2$ production, respectively. Various processes based on hydrogen sulfide and other acidic gases such as carbon dioxide, carbon disulfide, mercaptans, and carbonyl sulfide have been introduced for natural gas sweetening. One of these processes involves the use of solvents. In the present research, a device that measures solubility of gases in liquids was employed to measure solubility of CO$_2$ in solvent DEEA in the presence of TiO$_2$ at different solvent concentrations (10, 15, 20% w/w), various pressures (5, 10, and 15 bar) and different TiO$_2$ concentrations (0.05 and 0.1% w/w) at ambient temperature. Results showed that solubility increased from 25.8 to 42.4% v/v at constant pressure and without the presence of a nanoparticle in the absence of TiO$_2$ at solvent concentrations ranging from 10 to 15% w/w. At a constant concentration of the solvent (15% w/w), solubility increased from 31.8 to 36.7% v/v when the pressure was raised from 10 to 15 bar. Moreover, solubility increased from 32.7 to 36.7% v/v at constant solvent concentration (15% w/w) and pressure (15 bar) when TiO$_2$ concentration was raised.

KEYWORDS

Solubility, Titanium Dioxide Nanoparticle, Carbon Dioxide, Diethyl Ethanolamine
Introduction

In 1999, Iran with 263 million tons ranked first in CO$_2$ production in the Middle East (showing a 45.6% increase compared to 1990). Chemical industries in Iran produced 58.4 million tons of the total 263 million tons of this gas [1-4]. Different countries have come up with numerous ways to reduce CO$_2$ levels as this gas causes accumulation greenhouse gases, increases global temperatures, contributes to sea level rise, and causes droughts and acid rain [5-9].

Many studies have been carried out on increasing CO$_2$ absorption by using chemical solvents. Specifically, CO$_2$ absorption by amines is the most common technology employed for this purpose. Since amines of different types have their specific disadvantages when used for CO$_2$ absorption (e.g. corrosion, low absorptive capacity, high energy requirement for reduction, etc.)[10-16], various studies have been carried out in recent years to upgrade and improve CO$_2$ absorption by amines. One of these studies is the combination of third type amines with a first or second type amine, the combination of amines with ionic fluids, and the addition of nanoparticles to amines.

Morteza Afkhamipour et al. conducted a laboratory study and modeled CO$_2$ solubility, density, and viscosity in a 1-Dimethylamino-2-propanol (1DMA2P) solution. The data on equilibrium solubility of CO$_2$ were predicted using the Deshmukh-Mather thermodynamic model. They also modeled and predicted the experimental data of viscosity based on the Erring conventional transition state theory and using the Eyring–Wilson and the Eyring-NRTL (non-random two liquid) models. Results showed that the Eyring-Wilson model predicted the experimental data of viscosity better than the Eyring-NRTL model [17].

ADAK S et al. studied CO$_2$ solubility in an aqueous solution of 2-Diehtylaminoethanol+ Piperazine in the pressure range 0.1-65 kPa and temperature range 303.15-323.15 K. They developed a thermodynamic model that could relate the experimental data to CO$_2$ solubility extremely well. The experimental data of density were fitted to the Redlich-Kister, Grunberg-Nissan, Gonzalez-Olmos and Iglesias equations and the data on viscosity to the Grunberg-Nissan model. Results of the experiments showed that the DEAE+PZ combination absorbed CO$_2$ better and in greater quantities than the MDEA+PZ combination [18].

Bikash Kumar Mondal et al. investigated equilibrium solubility and enthalpy of CO$_2$ absorption in aqueous bis (3-aminopropyl) amine solution and its mixture with MEA, MDEA, AMP, and K$_2$CO$_3$. They noticed that the DPTA+K$_2$CO$_3$ mixture offered the most favorable loading capacity, enthalpy and viscosity among the mixed solvents. Although solid loading in CO$_2$ was 0.8 at 40°C, it was accompanied by the high pressure resulting from CO$_2$ (3kPa) [18, 19].

Helei Liu et al. analyzed CO$_2$ solubility and absorption rate in aqueous solutions of 1-Diethylamino-2-propanol (1DES2P). They investigated performance of CO$_2$ absorption in the 1DEA$_2$P solution by taking into account CO$_2$ equilibrium solubility, absorption rate, and absorption heat, and reported that 1DEA2P could be considered an alternative solvent for CO$_2$ absorption [20].

Hossein Shahraki et al. studied CO$_2$ solubility in absorption and desorption processes with the solvent methyl di-ethanolamine (MDEH) activated with Piperazine and reinforced by NPs at 12, 25, 50, and 100 ppm. CO$_2$ solubility was investigated at 40 and 120°C. The experiments were conducted at CO$_2$ partial pressure of 0.1-26 atm. They reported that the solvent CO$_2$ loading was enhanced by almost 37.5% through introducing the NPs at 25 ppm. Therefore, the process in which NPs were added demonstrated a higher productivity and cost-effectiveness [21].

Jiaozong Jiang et al. conducted a laboratory study on the effects of NPs on CO$_2$ absorption by applying aqueous
solutions of MEA and MDEA in a bubble column reactor. They studied the effects of various factors influencing CO\(_2\) absorption including loading solid NPs, NP size and type, total volume flow rate of the mixed gas, and the initial CO\(_2\) mass fraction. Results indicated that most NP types considerably increased CO\(_2\) absorption except for nanoparticles such as SiO\(_2\) NPs. Moreover, CO\(_2\) absorption in MDEA-based Nano fluids varied based on the different NPs following this order: TiO\(_2\) > MgO > Al\(_2\)O\(_3\) > SiO\(_2\) [22]. Recent research has revealed that solvent DEEA is capable of absorbing CO\(_2\). At certain concentrations, NPs can increase solubility of CO\(_2\) in amine solvents. TiO\(_2\) NPs have desirably increased solubility of CO\(_2\). Therefore, the present study examines discontinuous absorption of CO\(_2\) in DEEA in a laboratory system to measure the volume of CO\(_2\) absorption in solvents. The research variables include solvent concentration, initial pressure, and concentration of TiO\(_2\) NPs. Thermodynamic studies will then be carried out on the data, response surface methodology will be employed in designing the experiments, and results will be analyzed using the Design-Expert software.

In this present study various processes based on hydrogen sulfide and other acidic gases such as carbon dioxide, carbon disulfide, mercaptans, and carbonyl sulfide have been introduced for natural gas sweetening. One of these processes involves the use of solvents. Also a device that measures solubility of gases in liquids will be employed to measure solubility of CO\(_2\) in solvent DEEA in the presence of TiO\(_2\) at different solvent concentrations (10, 15, 20% w/w), various pressures (5, 10, and 15bar) and different TiO\(_2\) concentrations (0.05 and 0.1% w/w) at ambient temperature.

Theory

As is well known, CO\(_2\) absorption into an amine solution combines both physical and chemical absorptions. In order to obtain the CO\(_2\) equilibrium solubility, the concentration of CO\(_2\) in the aqueous solution needs to be calculated.

An equation of state (EOS) is required to perform calculations related to solubility, for which the present study employed the Peng-Robinson EOS (1). The parameters of this equation, proposed in 1967 by Peng-Robinson, are obtained by using the critical properties and the acentric factor [23].

\[
P = \frac{RT}{v-b} - \frac{a}{v(v+b) + \frac{ab}{v+b}}
\]

The EOS must be rewritten in terms of the compressibility coefficient \(Z\) to perform the calculations. Equation 2 is obtained in terms of \(Z\) by using the Peng-Robinson EOS.

\[
Z^3 - (1-B)Z^2 + (A-2B-3B)Z - (AB-B^2-B^3) = 0
\]

\[
A = \frac{aR^2}{P_C^2}
\]

\[
B = \frac{bR}{P_C}
\]

\[
a = 0.457235 \left(\frac{RT_C}{P_C}\right)^2
\]

\[
b = 0.077796 \frac{RT_C}{P_C}
\]

\[
a = [1 + (0.37464+1.54226\omega-0.26992\omega^2) (1+T_r^{0.5})]^2
\]

\[
T_r = \frac{T}{T_C}
\]

In the above equations, \(V\) is the molar volume, \(T_C\) and \(P_C\) are the temperature and pressure at the critical point, respectively, \(R\) denotes the gas constant, and \(\omega\) is the acentric factor. By solving Equation 2 in vapor-liquid equilibrium calculations, the largest obtained value for \(Z\) is used for the vapor phase and the smallest for the liquid phase. Using the values of \(Z\) obtained at the initial and equilibrium (final) temperature and pressure, the numbers of the initial and final (equilibrium) moles are determined from Equations 9 and 10:

\[
\Delta n = n_f - n_i
\]
Equation 12 defines solubility in terms of the number of carbon moles in CO\textsubscript{2} per kilogram of the solvent. To calculate the number of moles of solute for CO\textsubscript{2} dissolved in the solvent, the volumetric method is employed using Equation 13, in which the standard volume is calculated from the following equation:

\[
V_{STP} = \frac{nRT}{p}
\]

(14)

In Equation 14, the volume of the carbon dioxide gas is calculated under standard conditions (pressure of 1 atm and temperature of 25°C).

Experimental

The experiments were performed using a stainless-steel jacketed reactor (SS-316) with an internal volume of 296 cm3 and a pressure endurance of 200 bars. The internal vessel was equipped with four valves with a pressure endurance of 6000 psi, of which two were ball valves used to inject the solution and drain the water/gas mixture the test, and two were needle valves, one of which was used for gas injection, and the other for connecting to the gas chromatograph and gas sampling. There is also a gas loading chamber with a volume of 1820 cm3, which is fitted with two ball valves for gas injection and another for discharging into the reactor. A platinum temperature sensor (Pt-100) with a precision of ±0.1 K was used to measure the reactor internal temperature. The tank pressure was measured with a BD sensor with a precision of about 0.01 MPa. A swing mixer was used for to proper mixing in the hydrate formation main tank, and a pump was used to create vacuum inside the cell. The apparatus used in this study is schematically shown in Fig. 1.

Material

Materials used in this work include: Carbon dioxide gas was purchased from the Arvand Industrial Company of gases and with a purity of 99.99%. The carbon dioxide gas capsule is 50 liters in volume and has an initial pressure of 5 MPa. Nanoparticle of titanium dioxide as a suspended particle in a solvent and an effect on adsorption in some experiments with TiO\textsubscript{2} chemical formula from Nano Pasargad New Co., Diethyl ethanolamine (2-DEEA) with a purity of 99.99% from the Swiss Folka Company with the chemical formula C\textsubscript{6}H\textsubscript{15}NO and demineralized (DM) Water for solution preparation. Made from industrial companies\cite{9, 24-30}.

Results

In this work, the solubility of carbon dioxide in DEEA solution was measured with/without of titanium dioxide nanoparticle with various concentrations and pressures, so the experimental results are presented in this section.
To study the actual solubility behavior of CO$_2$ in DEEA, its solubility was calculated and investigated by using the Peng-Robinson EOS. Results obtained from these calculations are presented in Table 1.

Table 1. Solubility of carbon dioxide using the Peng-Robinson equation

<table>
<thead>
<tr>
<th>RUN</th>
<th>Solvent(AMIN)</th>
<th>Nano particle</th>
<th>P_0</th>
<th>V(STP)</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>0</td>
<td>9</td>
<td>4239.28</td>
<td>42.39</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0</td>
<td>13.5</td>
<td>3265.69</td>
<td>32.66</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>0</td>
<td>4.5</td>
<td>3242.89</td>
<td>32.43</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>0</td>
<td>9</td>
<td>2581.36</td>
<td>25.81</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>0.05</td>
<td>13.5</td>
<td>4434.28</td>
<td>44.34</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>0.05</td>
<td>4.5</td>
<td>4150.51</td>
<td>41.51</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>0.05</td>
<td>9</td>
<td>3764.54</td>
<td>37.65</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>0.05</td>
<td>13.5</td>
<td>2640.63</td>
<td>26.41</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>0.05</td>
<td>4.5</td>
<td>2282.96</td>
<td>22.83</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>0.1</td>
<td>9</td>
<td>4135.96</td>
<td>41.36</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>0.1</td>
<td>13.5</td>
<td>3668.65</td>
<td>36.69</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>0.1</td>
<td>4.5</td>
<td>3178.92</td>
<td>31.79</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>0.1</td>
<td>9</td>
<td>2506.68</td>
<td>25.07</td>
</tr>
</tbody>
</table>

As shown in Table 1, in the absence of the NPs, solubility of CO$_2$ in water improves with increases in the concentration of the amine solvent, increasing further if NPs are added to the solution. Changes in solubility in the presence of the NPs and the solvent are now further studied and interpreted by using the Figures.

The effect of different parameters on solubility

In Figures 1-6, effects of each parameter (pressure, NP, and solvent) are presented individually or in combination according to what was stated in Table 1.

Fig. 2 indicates effects of pressure on solubility. Effects of pressure on solubility at NP concentration of 0.05% w/w and solvent concentration of 15% w/w show that solubility of CO$_2$ is less affected by pressure compared to the solvent type. The reason for this is that higher pressures at constant temperature increase the partial pressure (the pressure exerted on each part of this mixture).

Consequently, further gas compression takes place, a larger number of molecules enter the liquid phase, and solubility increases.

The effect of nanoparticle concentration on solubility

Fig. 3 shows the effects of NPs on the solubility of CO$_2$ at pressure of 10 bar and solvent concentration of 15% w/w. As shown in this Figure, the effects of the NPs are negligible compared to those of the other two parameters (pressure and solvent). In the beginning, as soon as the gas is absorbed by the Nano fluid, the stable NPs break up the gas bubbles into smaller ones and the mass transfer area increases. Therefore, solubility of small gas bubbles increases eventually, leading to increased total absorption by the Nano fluids.

The effect of amine solution concentration on solubility

Fig. 4 displays effects of the solvent on carbon dioxide solubility at pressure of 10 bar and NP concentration of
0.05% w/w. It shows that the solute greatly influences solubility of CO₂ compared to the other two parameters (pressure and NPs). We can say that the amine solution decreases the surface tension of the solvent.

In other words, accumulation of the amine solution at the interface between immiscible fluids can reduce surface tension. This decreases mass-transfer resistance at the surface, facilitating the penetration of gas CO₂. As a result, the kinetic behavior is improved leading to higher solubility of gas CO₂ in the solvent.

Fig. 5 presents simultaneous effects of pressure and NP concentration on solubility of CO₂. This Figure shows that, at the constant solvent concentration of 15%w/w, a combination of pressure in the 5-15 bar range and NP concentration in the 0-0.1% w/w range does not significantly affect solubility of CO₂.
concentrations higher than 15% w/w and pressure in the 5-15 bar range.

Fig. 7 shows that, at the pressure of 10 bar, the simultaneous use of the NP concentration range 0-0.1% w/w and the solvent concentration higher than 15% w/w results in the highest solubility percentage.

Fig 7. The simultaneous effect of solution and nanoparticles on solubility

Conclusion

In the present research, solubility of CO$_2$ in DEEA in both absence and presence of TiO$_2$ NPs was studied. The following results were obtained:

All experiments were conducted at a constant temperature. Therefore, effects of temperature were not taken into account in any of the results. In general, the experiments were carried out in 13 stages and at 3 different pressures (5, 10, and 15 bar) to study the degree of solubility of CO$_2$ in DEEA at concentrations of 10, 15, and 20% w/w of the solvent in both presence and absence of TiO$_2$ NPs with a concentration range of 0-0.1% w/w. Results indicated that, at constant pressure, increases in the concentration of the DEEA solution increased solubility of CO$_2$, but increases in the concentrations of the NPs did not considerably change solubility. At constant concentration of the DEEA solution, increases in the pressure of the system improved solubility of CO$_2$. Moreover, the performed analyses of the Figures produced by the Design Expert-11 software suggested that the DEEA solution was a more influential factor of solubility.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, bar</td>
<td>Pressure</td>
</tr>
<tr>
<td>T, K</td>
<td>Temperature</td>
</tr>
<tr>
<td>R, j. mole. k</td>
<td>Universal gas constant</td>
</tr>
<tr>
<td>V, m3</td>
<td>Volume</td>
</tr>
<tr>
<td>Z</td>
<td>Compressibility factor</td>
</tr>
<tr>
<td>T_C, K</td>
<td>Critical temperature</td>
</tr>
<tr>
<td>P_C, bar</td>
<td>Critical pressure</td>
</tr>
<tr>
<td>T_R, K</td>
<td>Reduced temperature</td>
</tr>
<tr>
<td>n_0, mole</td>
<td>Initial moles</td>
</tr>
<tr>
<td>n_e, mole</td>
<td>Secondary moles</td>
</tr>
<tr>
<td>P_0, bar</td>
<td>Initial pressure</td>
</tr>
<tr>
<td>P_e, bar</td>
<td>Secondary pressure</td>
</tr>
<tr>
<td>V_0, m3</td>
<td>Initial volume</td>
</tr>
<tr>
<td>V_e, m3</td>
<td>Secondary volume</td>
</tr>
<tr>
<td>T_0, K</td>
<td>Initial temperature</td>
</tr>
<tr>
<td>T_e, K</td>
<td>Secondary temperature</td>
</tr>
<tr>
<td>a, b, A, B</td>
<td>Constant</td>
</tr>
<tr>
<td>V_{STP}, m3</td>
<td>Standard volume</td>
</tr>
<tr>
<td>ω</td>
<td>Acentric factor</td>
</tr>
</tbody>
</table>

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.
References:

