ISC, CAS, Google Scholar     h-index: 20

Document Type : Original Research Article

Authors

1 Department of Chemical engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

2 Assistant Professor, Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

10.33945/SAMI/PCBR.2020.1.7

Abstract

Fossil fuels are the main source of CO2 emissions into the atmosphere, which are sources of air pollutants. Environmental research has confirmed that atmospheric CO2 concentration has risen from 280 ppm in 1800 to 358 ppm in 1994 (an increase of 27.86%). Russia, the United States, China, the rest of the Asian countries, Latin American countries, and African countries accounted for 27, 22, 11, 13, 4, and 3% of the total global CO2 production, respectively. Various processes based on hydrogen sulfide and other acidic gases such as carbon dioxide, carbon disulfide, mercaptans, and carbonyl sulfide have been introduced for natural gas sweetening. One of these processes involves the use of solvents. In the present research, a device that measures solubility of gases in liquids was employed to measure solubility of CO2 in solvent DEEA in the presence of TiO2 at different solvent concentrations (10, 15, 20% w/w), various pressures (5, 10, and 15bar) and different TiO2 concentrations (0.05 and 0.1% w/w) at ambient temperature. Results showed that solubility increased from 25.8 to 42.4% v/v at constant pressure and without the presence of a nanoparticle in the absence of TiO2 at solvent concentrations ranging from 10 to 15% w/w. At a constant concentration of the solvent (15% w/w), solubility increased from 31.8 to 36.7% when the pressure was raised from 10 to 15 bar. Moreover, solubility increased from 32.7 to 36.7% v/v at constant solvent concentration (15% w/w) and pressure (15bar) when TiO2 concentration was raised.

Graphical Abstract

Experimental Study of Carbon Dioxide Absorption in Diethyl Ethanolamine (DEEA) in the Presence of Titanium Dioxide (TiO2)

Keywords

Main Subjects

References:    
[1] S. Singto, T. Supap, R. Idem, P. Tontiwachwuthikul and S. Tantayanon, The effect of chemical structure of newly synthesized tertiary amines used for the post combustion capture process on carbon dioxide (CO2): Kinetics of CO2 absorption using the stopped-flow apparatus and regeneration, and heat input of CO2 regeneration. Energy Procedia,  114 (2017)  852-859.
[2] S. Singto, T. Supap, R. Idem, P. Tontiwachwuthikul, S. Tantayanon, M.J. Al-Marri and A. Benamor, Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: The effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration. Separation and Purification Technology,  167 (2016)  97-107.
[3] A. Samimi, S. Zarinabadi, A.H. Shahbazi Kootenaei, A. Azimi and M. Mirzaei, Kinetic Overview of Catalytic Reforming Units (Fixed and Continuous Reforming). Chemical Methodologies,  4 (2019)  852-864.
[4] A. Samimi, S. Zarinabadi, S. Kotanaei, A. Hossein, A. Azimi and M. Mirzaei, Use of data mining in the corrosion classification of pipelines in catalytic reforming units (CRU). Iranian Chemical Communication,  7 (2019)  681-691.
[5] E.S. Rubin, H. Mantripragada, A. Marks, P. Versteeg and J. Kitchin, The outlook for improved carbon capture technology. Progress in energy and combustion science,  38 (2012)  630-671.
[6] P. Tontiwachwuthikul and R. Idem, Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents. Future Medicine,  2 (2013)  261-263.
[7] A. Dey, S.K. Dash and B. Mandal, Equilibrium CO2 solubility and thermophysical properties of aqueous blends of 1-(2-aminoethyl) piperazine and N-methyldiethanolamine. Fluid Phase Equilibria,  463 (2018)  91-105.
[8] M.W. Arshad, P.L. Fosbøl, N. von Solms, H.F. Svendsen and K. Thomsen, Equilibrium solubility of CO2 in alkanolamines. Energy Procedia,  51 (2014)  217-223.
[9] N.F.N.A. Samat, R.B. Yusoff, M.K. Aroua, A. Ramalingam and M.A. Kassim, Solubility of CO2 in aqueous 2‑amino‑1, 3‑propanediol (Serinol) at elevated pressures. Journal of Molecular Liquids,  277 (2019)  207-216.
[10] D. Fu, H. Hao and F. Liu, Experiment and model for the viscosity of carbonated 2-amino-2-methyl-1-propanol-monoethanolamine and 2-amino-2-methyl-1-propanol-diethanolamine aqueous solution. Journal of Molecular Liquids,  188 (2013)  37-41.
[11] A. Ahmady, M.A. Hashim and M.K. Aroua, Kinetics of Carbon Dioxide absorption into aqueous MDEA+[bmim][BF4] solutions from 303 to 333 K. Chemical engineering journal,  200 (2012)  317-328.
[12] J.M. Navaza, D. Gómez-Díaz and M.D. La Rubia, Removal process of CO2 using MDEA aqueous solutions in a bubble column reactor. Chemical Engineering Journal,  146 (2009)  184-188.
[13] D. Mohammadnazar and A. Samimi, Nessacities of Studying HSE Management Position and Role in Iran Oil Industry. Journal of Chemical Reviews,  1 (2019)  252-259.
[14] H. Guo, L. Hui and S. Shen, Monoethanolamine+ 2-methoxyethanol mixtures for CO2 capture: Density, viscosity and CO2 solubility. The Journal of Chemical Thermodynamics,  132 (2019)  155-163.
[15] I. Adeyemi, M.R. Abu-Zahra and I. Alnashef, Experimental study of the solubility of CO2 in novel amine based deep eutectic solvents. Energy Procedia,  105 (2017)  1394-1400.
[16] M. Xiao, H. Liu, H. Gao and Z. Liang, CO2 absorption with aqueous tertiary amine solutions: Equilibrium solubility and thermodynamic modeling. The Journal of Chemical Thermodynamics,  122 (2018)  170-182.
[17] M. Afkhamipour and M. Mofarahi, A modeling-optimization framework for assessment of CO2 absorption capacity by novel amine solutions: 1DMA2P, 1DEA2P, DEEA, and DEAB. Journal of Cleaner Production,  171 (2018)  234-249.
[18] A. Samimi, S. Zarinabadi, A.H. Shahbazi Kootenaei, A. Azimi and M. Mirzaei, Considering different kinds of gasoline unit catalysts. Journal of Medicinal and Chemical Sciences,  3 (2020)  79-94.
[19] B.K. Mondal, S.S. Bandyopadhyay and A.N. Samanta, Equilibrium solubility and enthalpy of CO2 absorption in aqueous bis (3-aminopropyl) amine and its mixture with MEA, MDEA, AMP and K2CO3. Chemical Engineering Science,  170 (2017)  58-67.
[20] H. Liu, M. Xiao, Z. Liang and P. Tontiwachwuthikul, The analysis of solubility, absorption kinetics of CO2 absorption into aqueous 1‐diethylamino‐2‐propanol solution. AIChE Journal,  63 (2017)  2694-2704.
[21] H. Shahraki, J. Sadeghi, F. Shahraki and D. Kalhori, Investigation on CO2 solubility in aqueous amine solution of MDEA/PZ with SiO2 nanoparticles additive as novel solvent. J Chem Eng Process Technol,  7 (2016)  37-43.
[22] J. Jiang, B. Zhao, Y. Zhuo and S. Wang, Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles. International Journal of greenhouse gas control,  29 (2014)  135-141.
[23] T. Sema, A. Naami, K. Fu, G. Chen, Z. Liang, R. Idem and P. Tontiwachwuthikul, Comprehensive mass transfer and reaction kinetics studies of a novel reactive 4-diethylamino-2-butanol solvent for capturing CO2. Chemical Engineering Science,  100 (2013)  183-194.
[24] A. Bozorgian and M. Ghazinezhad, A Case Study on Causes of Scale Formation-Induced Damage in Boiler Tubes. J Biochem Tech,  special issue (2018)  149-153.
[25] S. Adak and M. Kundu, Vapor–liquid equilibrium and physicochemical properties of novel aqueous blends of (2-Diethylaminoethanol+ Piperazine) for CO2 appropriation. Journal of Chemical & Engineering Data,  62 (2017)  1937-1947.
[26] A. Bozorgian, Z. Arab Aboosadi, A. Mohammadi, B. Honarvar and A. Azimi, Optimization of determination of CO2 gas hydrates surface tension in the presence of non-ionic surfactants and TBAC. Eurasian Chemical Communications,  2 (2020)  420-426.
[27] J. Mashhadizadeh, A. Bozorgian and A. Azimi, Investigation of the kinetics of formation of Clatrit-like dual hydrates TBAC in the presence of CTAB. Eurasian Chemical Communications,  2 (2020)  536-547.
[28] S. Yang, A. Arvanitis, Z. Cao, X. Sun and J. Dong, Synthesis of silicalite membrane with an aluminum-containing surface for controlled modification of zeolitic pore entries for enhanced gas separation. Processes,  6 (2018)  13.
[29] M. Zhang, L. Deng, D. Xiang, B. Cao, S.S. Hosseini and P. Li, Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes,  7 (2019)  51.
[30] S.A. Stern, Polymers for gas separations: the next decade. Journal of Membrane Science,  94 (1994)  1-65.
 
 How to cite :
H. Shamsin Beyranvand and H. Sarlak, Experimental Study of Carbon Dioxide Absorption in Diethyl Ethanolamine (DEEA) in the Presence of Titanium Dioxide (TiO2). Progress in Chemical and Biochemical Research,  3 (2020)  55-63.